Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784096324> ?p ?o ?g. }
- W2784096324 endingPage "45" @default.
- W2784096324 startingPage "45" @default.
- W2784096324 abstract "Cities depend on multiple heterogeneous, interconnected infrastructures to provide safe water to consumers. Given this complexity, efficient numerical techniques are needed to support optimal control and management of a water distribution network (WDN). This paper introduces a holistic analysis framework to support water utilities on the decision making process for an efficient supply management. The proposal is based on graph spectral techniques that take advantage of eigenvalues and eigenvectors properties of matrices that are associated with graphs. Instances of these matrices are the adjacency matrix and the Laplacian, among others. The interest for this application is to work on a graph that specifically represents a WDN. This is a complex network that is made by nodes corresponding to water sources and consumption points and links corresponding to pipes and valves. The aim is to face new challenges on urban water supply, ranging from computing approximations for network performance assessment to setting device positioning for efficient and automatic WDN division into district metered areas. It is consequently created a novel tool-set of graph spectral techniques adapted to improve main water management tasks and to simplify the identification of water losses through the definition of an optimal network partitioning. Two WDNs are used to analyze the proposed methodology. Firstly, the well-known network of C-Town is investigated for benchmarking of the proposed graph spectral framework. This allows for comparing the obtained results with others coming from previously proposed approaches in literature. The second case-study corresponds to an operational network. It shows the usefulness and optimality of the proposal to effectively manage a WDN." @default.
- W2784096324 created "2018-01-26" @default.
- W2784096324 creator A5011824636 @default.
- W2784096324 creator A5032946924 @default.
- W2784096324 creator A5043873201 @default.
- W2784096324 creator A5082632496 @default.
- W2784096324 creator A5084465056 @default.
- W2784096324 date "2018-01-09" @default.
- W2784096324 modified "2023-10-17" @default.
- W2784096324 title "Applications of Graph Spectral Techniques to Water Distribution Network Management" @default.
- W2784096324 cites W1587744656 @default.
- W2784096324 cites W1841661120 @default.
- W2784096324 cites W1971417023 @default.
- W2784096324 cites W1981879833 @default.
- W2784096324 cites W1981893977 @default.
- W2784096324 cites W1992874777 @default.
- W2784096324 cites W1994624869 @default.
- W2784096324 cites W2003007819 @default.
- W2784096324 cites W2008620264 @default.
- W2784096324 cites W2012048819 @default.
- W2784096324 cites W2026942921 @default.
- W2784096324 cites W2029737862 @default.
- W2784096324 cites W2053279442 @default.
- W2784096324 cites W2064713711 @default.
- W2784096324 cites W2067269323 @default.
- W2784096324 cites W2070722739 @default.
- W2784096324 cites W2070759473 @default.
- W2784096324 cites W2077856845 @default.
- W2784096324 cites W2087194317 @default.
- W2784096324 cites W2092677285 @default.
- W2784096324 cites W2112090702 @default.
- W2784096324 cites W2114030927 @default.
- W2784096324 cites W2116350863 @default.
- W2784096324 cites W2121947440 @default.
- W2784096324 cites W2132914434 @default.
- W2784096324 cites W2263689052 @default.
- W2784096324 cites W2330688772 @default.
- W2784096324 cites W2332520452 @default.
- W2784096324 cites W2519627509 @default.
- W2784096324 cites W2529830297 @default.
- W2784096324 cites W2614098488 @default.
- W2784096324 cites W2618385120 @default.
- W2784096324 cites W2734864857 @default.
- W2784096324 cites W2737941061 @default.
- W2784096324 cites W2886597387 @default.
- W2784096324 cites W3106497408 @default.
- W2784096324 doi "https://doi.org/10.3390/w10010045" @default.
- W2784096324 hasPublicationYear "2018" @default.
- W2784096324 type Work @default.
- W2784096324 sameAs 2784096324 @default.
- W2784096324 citedByCount "47" @default.
- W2784096324 countsByYear W27840963242018 @default.
- W2784096324 countsByYear W27840963242019 @default.
- W2784096324 countsByYear W27840963242020 @default.
- W2784096324 countsByYear W27840963242021 @default.
- W2784096324 countsByYear W27840963242022 @default.
- W2784096324 countsByYear W27840963242023 @default.
- W2784096324 crossrefType "journal-article" @default.
- W2784096324 hasAuthorship W2784096324A5011824636 @default.
- W2784096324 hasAuthorship W2784096324A5032946924 @default.
- W2784096324 hasAuthorship W2784096324A5043873201 @default.
- W2784096324 hasAuthorship W2784096324A5082632496 @default.
- W2784096324 hasAuthorship W2784096324A5084465056 @default.
- W2784096324 hasBestOaLocation W27840963241 @default.
- W2784096324 hasConcept C114614502 @default.
- W2784096324 hasConcept C115178988 @default.
- W2784096324 hasConcept C121332964 @default.
- W2784096324 hasConcept C124101348 @default.
- W2784096324 hasConcept C126255220 @default.
- W2784096324 hasConcept C129763632 @default.
- W2784096324 hasConcept C132525143 @default.
- W2784096324 hasConcept C144133560 @default.
- W2784096324 hasConcept C158693339 @default.
- W2784096324 hasConcept C162853370 @default.
- W2784096324 hasConcept C180356752 @default.
- W2784096324 hasConcept C31258907 @default.
- W2784096324 hasConcept C33923547 @default.
- W2784096324 hasConcept C41008148 @default.
- W2784096324 hasConcept C62520636 @default.
- W2784096324 hasConcept C80444323 @default.
- W2784096324 hasConcept C86251818 @default.
- W2784096324 hasConcept C88230418 @default.
- W2784096324 hasConceptScore W2784096324C114614502 @default.
- W2784096324 hasConceptScore W2784096324C115178988 @default.
- W2784096324 hasConceptScore W2784096324C121332964 @default.
- W2784096324 hasConceptScore W2784096324C124101348 @default.
- W2784096324 hasConceptScore W2784096324C126255220 @default.
- W2784096324 hasConceptScore W2784096324C129763632 @default.
- W2784096324 hasConceptScore W2784096324C132525143 @default.
- W2784096324 hasConceptScore W2784096324C144133560 @default.
- W2784096324 hasConceptScore W2784096324C158693339 @default.
- W2784096324 hasConceptScore W2784096324C162853370 @default.
- W2784096324 hasConceptScore W2784096324C180356752 @default.
- W2784096324 hasConceptScore W2784096324C31258907 @default.
- W2784096324 hasConceptScore W2784096324C33923547 @default.
- W2784096324 hasConceptScore W2784096324C41008148 @default.
- W2784096324 hasConceptScore W2784096324C62520636 @default.
- W2784096324 hasConceptScore W2784096324C80444323 @default.