Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784129214> ?p ?o ?g. }
- W2784129214 endingPage "775" @default.
- W2784129214 startingPage "764" @default.
- W2784129214 abstract "This article is based on the New Horizons lecture delivered at the 2016 Radiological Society of North America Annual Meeting. It addresses looming changes for radiology, many of which stem from the disruptive effects of the Fourth Industrial Revolution. This is an emerging era of unprecedented rapid innovation marked by the integration of diverse disciplines and technologies, including data science, machine learning, and artificial intelligence—technologies that narrow the gap between man and machine. Technologic advances and the convergence of life sciences, physical sciences, and bioengineering are creating extraordinary opportunities in diagnostic radiology, image-guided therapy, targeted radionuclide therapy, and radiology informatics, including radiologic image analysis. This article uses the example of oncology to make the case that, if members in the field of radiology continue to be innovative and continuously reinvent themselves, radiology can play an ever-increasing role in both precision medicine and value-driven health care. © RSNA, 2018" @default.
- W2784129214 created "2018-01-26" @default.
- W2784129214 creator A5021013894 @default.
- W2784129214 date "2018-03-01" @default.
- W2784129214 modified "2023-09-30" @default.
- W2784129214 title "2016 New Horizons Lecture: Beyond Imaging—Radiology of Tomorrow" @default.
- W2784129214 cites W1605828488 @default.
- W2784129214 cites W178925843 @default.
- W2784129214 cites W1917894041 @default.
- W2784129214 cites W196319388 @default.
- W2784129214 cites W1979632906 @default.
- W2784129214 cites W2001591220 @default.
- W2784129214 cites W2052507258 @default.
- W2784129214 cites W2060643602 @default.
- W2784129214 cites W2080661875 @default.
- W2784129214 cites W2091723288 @default.
- W2784129214 cites W2097475056 @default.
- W2784129214 cites W2099627885 @default.
- W2784129214 cites W2103004421 @default.
- W2784129214 cites W2105129152 @default.
- W2784129214 cites W2105922224 @default.
- W2784129214 cites W2128739912 @default.
- W2784129214 cites W2159173044 @default.
- W2784129214 cites W2174661749 @default.
- W2784129214 cites W2193365812 @default.
- W2784129214 cites W2276462312 @default.
- W2784129214 cites W2312576106 @default.
- W2784129214 cites W2346567062 @default.
- W2784129214 cites W2397136240 @default.
- W2784129214 cites W2467018059 @default.
- W2784129214 cites W2494151799 @default.
- W2784129214 cites W2510118245 @default.
- W2784129214 cites W2519298172 @default.
- W2784129214 cites W2523886424 @default.
- W2784129214 cites W2525984666 @default.
- W2784129214 cites W2532226140 @default.
- W2784129214 cites W2556129573 @default.
- W2784129214 cites W2564891497 @default.
- W2784129214 cites W2573369749 @default.
- W2784129214 cites W2584017349 @default.
- W2784129214 cites W2588199348 @default.
- W2784129214 cites W2594978444 @default.
- W2784129214 cites W2595718694 @default.
- W2784129214 cites W2598967510 @default.
- W2784129214 cites W2605610955 @default.
- W2784129214 cites W2613362156 @default.
- W2784129214 cites W313065440 @default.
- W2784129214 cites W4378843396 @default.
- W2784129214 doi "https://doi.org/10.1148/radiol.2017171503" @default.
- W2784129214 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29346031" @default.
- W2784129214 hasPublicationYear "2018" @default.
- W2784129214 type Work @default.
- W2784129214 sameAs 2784129214 @default.
- W2784129214 citedByCount "29" @default.
- W2784129214 countsByYear W27841292142018 @default.
- W2784129214 countsByYear W27841292142019 @default.
- W2784129214 countsByYear W27841292142020 @default.
- W2784129214 countsByYear W27841292142021 @default.
- W2784129214 countsByYear W27841292142022 @default.
- W2784129214 countsByYear W27841292142023 @default.
- W2784129214 crossrefType "journal-article" @default.
- W2784129214 hasAuthorship W2784129214A5021013894 @default.
- W2784129214 hasBestOaLocation W27841292141 @default.
- W2784129214 hasConcept C119599485 @default.
- W2784129214 hasConcept C120665830 @default.
- W2784129214 hasConcept C121332964 @default.
- W2784129214 hasConcept C126838900 @default.
- W2784129214 hasConcept C127413603 @default.
- W2784129214 hasConcept C142812007 @default.
- W2784129214 hasConcept C146978453 @default.
- W2784129214 hasConcept C154945302 @default.
- W2784129214 hasConcept C191630685 @default.
- W2784129214 hasConcept C19527891 @default.
- W2784129214 hasConcept C207267971 @default.
- W2784129214 hasConcept C29829512 @default.
- W2784129214 hasConcept C2992257854 @default.
- W2784129214 hasConcept C31601959 @default.
- W2784129214 hasConcept C41008148 @default.
- W2784129214 hasConcept C71924100 @default.
- W2784129214 hasConceptScore W2784129214C119599485 @default.
- W2784129214 hasConceptScore W2784129214C120665830 @default.
- W2784129214 hasConceptScore W2784129214C121332964 @default.
- W2784129214 hasConceptScore W2784129214C126838900 @default.
- W2784129214 hasConceptScore W2784129214C127413603 @default.
- W2784129214 hasConceptScore W2784129214C142812007 @default.
- W2784129214 hasConceptScore W2784129214C146978453 @default.
- W2784129214 hasConceptScore W2784129214C154945302 @default.
- W2784129214 hasConceptScore W2784129214C191630685 @default.
- W2784129214 hasConceptScore W2784129214C19527891 @default.
- W2784129214 hasConceptScore W2784129214C207267971 @default.
- W2784129214 hasConceptScore W2784129214C29829512 @default.
- W2784129214 hasConceptScore W2784129214C2992257854 @default.
- W2784129214 hasConceptScore W2784129214C31601959 @default.
- W2784129214 hasConceptScore W2784129214C41008148 @default.
- W2784129214 hasConceptScore W2784129214C71924100 @default.
- W2784129214 hasIssue "3" @default.
- W2784129214 hasLocation W27841292141 @default.
- W2784129214 hasLocation W27841292142 @default.