Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784181837> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2784181837 abstract "We present a method for identification of models with good predictive performances in the family of Bayesian log-linear mixed models with Dirichlet process random effects. Such a problem arises in many different applications; here we consider it in the context of disclosure risk estimation, an increasingly relevant issue raised by the increasing demand for data collected under a pledge of confidentiality. Two different criteria are proposed and jointly used via a two-stage selection procedure, in a M-open view. The first stage is devoted to identifying a path of search; then, at the second, a small number of nonparametric models is evaluated through an application-specific score based Bayesian information criterion. We test our method on a variety of contingency tables based on microdata samples from the US Census Bureau and the Italian National Security Administration, treated here as populations, and carefully discuss its features. This leads us to a journey around different forms and sources of bias along which we show that (i) while based on the so called score+search paradigm, our method is by construction well protected from the selection-induced bias, and (ii) models with good performances are invariably characterized by an extraordinarily simple structure of fixed effects. The complexity of model selection - a very challenging and difficult task in a strictly parametric context with large and sparse tables - is therefore significantly defused by our approach. An attractive collateral result of our analysis are fruitful new ideas about modeling in small area estimation problems, where interest is in total counts over cells with a small number of observations." @default.
- W2784181837 created "2018-01-26" @default.
- W2784181837 creator A5011524547 @default.
- W2784181837 creator A5021162375 @default.
- W2784181837 creator A5073006784 @default.
- W2784181837 date "2018-01-16" @default.
- W2784181837 modified "2023-10-17" @default.
- W2784181837 title "Assessing Bayesian Nonparametric Log-Linear Models: an application to Disclosure Risk estimation" @default.
- W2784181837 cites W2060050130 @default.
- W2784181837 cites W1987892279 @default.
- W2784181837 hasPublicationYear "2018" @default.
- W2784181837 type Work @default.
- W2784181837 sameAs 2784181837 @default.
- W2784181837 citedByCount "1" @default.
- W2784181837 countsByYear W27841818372019 @default.
- W2784181837 crossrefType "posted-content" @default.
- W2784181837 hasAuthorship W2784181837A5011524547 @default.
- W2784181837 hasAuthorship W2784181837A5021162375 @default.
- W2784181837 hasAuthorship W2784181837A5073006784 @default.
- W2784181837 hasConcept C102366305 @default.
- W2784181837 hasConcept C107673813 @default.
- W2784181837 hasConcept C116834253 @default.
- W2784181837 hasConcept C119857082 @default.
- W2784181837 hasConcept C124101348 @default.
- W2784181837 hasConcept C149782125 @default.
- W2784181837 hasConcept C151730666 @default.
- W2784181837 hasConcept C154945302 @default.
- W2784181837 hasConcept C2779343474 @default.
- W2784181837 hasConcept C2781280628 @default.
- W2784181837 hasConcept C33923547 @default.
- W2784181837 hasConcept C41008148 @default.
- W2784181837 hasConcept C59822182 @default.
- W2784181837 hasConcept C86803240 @default.
- W2784181837 hasConcept C93959086 @default.
- W2784181837 hasConceptScore W2784181837C102366305 @default.
- W2784181837 hasConceptScore W2784181837C107673813 @default.
- W2784181837 hasConceptScore W2784181837C116834253 @default.
- W2784181837 hasConceptScore W2784181837C119857082 @default.
- W2784181837 hasConceptScore W2784181837C124101348 @default.
- W2784181837 hasConceptScore W2784181837C149782125 @default.
- W2784181837 hasConceptScore W2784181837C151730666 @default.
- W2784181837 hasConceptScore W2784181837C154945302 @default.
- W2784181837 hasConceptScore W2784181837C2779343474 @default.
- W2784181837 hasConceptScore W2784181837C2781280628 @default.
- W2784181837 hasConceptScore W2784181837C33923547 @default.
- W2784181837 hasConceptScore W2784181837C41008148 @default.
- W2784181837 hasConceptScore W2784181837C59822182 @default.
- W2784181837 hasConceptScore W2784181837C86803240 @default.
- W2784181837 hasConceptScore W2784181837C93959086 @default.
- W2784181837 hasLocation W27841818371 @default.
- W2784181837 hasOpenAccess W2784181837 @default.
- W2784181837 hasPrimaryLocation W27841818371 @default.
- W2784181837 hasRelatedWork W2066270466 @default.
- W2784181837 hasRelatedWork W2225848941 @default.
- W2784181837 hasRelatedWork W2240033217 @default.
- W2784181837 hasRelatedWork W2342171075 @default.
- W2784181837 hasRelatedWork W2593536560 @default.
- W2784181837 hasRelatedWork W2807315840 @default.
- W2784181837 hasRelatedWork W2941740678 @default.
- W2784181837 hasRelatedWork W2969893803 @default.
- W2784181837 hasRelatedWork W3013474403 @default.
- W2784181837 hasRelatedWork W3028665549 @default.
- W2784181837 hasRelatedWork W3102156848 @default.
- W2784181837 hasRelatedWork W3115028957 @default.
- W2784181837 hasRelatedWork W3122070928 @default.
- W2784181837 hasRelatedWork W3123085124 @default.
- W2784181837 hasRelatedWork W3124977418 @default.
- W2784181837 hasRelatedWork W3131928427 @default.
- W2784181837 hasRelatedWork W3148926633 @default.
- W2784181837 hasRelatedWork W3162130453 @default.
- W2784181837 hasRelatedWork W3201307872 @default.
- W2784181837 hasRelatedWork W3202978872 @default.
- W2784181837 isParatext "false" @default.
- W2784181837 isRetracted "false" @default.
- W2784181837 magId "2784181837" @default.
- W2784181837 workType "article" @default.