Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784226073> ?p ?o ?g. }
- W2784226073 abstract "In-silico quantitative structure-activity relationship (QSAR) models based tools are widely used to screen huge databases of compounds in order to determine the biological properties of chemical molecules based on their chemical structure. With the passage of time, the exponentially growing amount of synthesized and known chemicals data demands computationally efficient automated QSAR modeling tools, available to researchers that may lack extensive knowledge of machine learning modeling. Thus, a fully automated and advanced modeling platform can be an important addition to the QSAR community.In the presented workflow the process from data preparation to model building and validation has been completely automated. The most critical modeling tasks (data curation, data set characteristics evaluation, variable selection and validation) that largely influence the performance of QSAR models were focused. It is also included the ability to quickly evaluate the feasibility of a given data set to be modeled. The developed framework is tested on data sets of thirty different problems. The best-optimized feature selection methodology in the developed workflow is able to remove 62-99% of all redundant data. On average, about 19% of the prediction error was reduced by using feature selection producing an increase of 49% in the percentage of variance explained (PVE) compared to models without feature selection. Selecting only the models with a modelability score above 0.6, average PVE scores were 0.71. A strong correlation was verified between the modelability scores and the PVE of the models produced with variable selection.We developed an extendable and highly customizable fully automated QSAR modeling framework. This designed workflow does not require any advanced parameterization nor depends on users decisions or expertise in machine learning/programming. With just a given target or problem, the workflow follows an unbiased standard protocol to develop reliable QSAR models by directly accessing online manually curated databases or by using private data sets. The other distinctive features of the workflow include prior estimation of data modelability to avoid time-consuming modeling trials for non modelable data sets, an efficient variable selection procedure and the facility of output availability at each modeling task for the diverse application and reproduction of historical predictions. The results reached on a selection of thirty QSAR problems suggest that the approach is capable of building reliable models even for challenging problems." @default.
- W2784226073 created "2018-01-26" @default.
- W2784226073 creator A5076982064 @default.
- W2784226073 creator A5080778676 @default.
- W2784226073 date "2018-01-16" @default.
- W2784226073 modified "2023-10-14" @default.
- W2784226073 title "An automated framework for QSAR model building" @default.
- W2784226073 cites W128607844 @default.
- W2784226073 cites W1545231783 @default.
- W2784226073 cites W1551601880 @default.
- W2784226073 cites W1581492599 @default.
- W2784226073 cites W1964903133 @default.
- W2784226073 cites W1965607248 @default.
- W2784226073 cites W1972650408 @default.
- W2784226073 cites W1975875968 @default.
- W2784226073 cites W1978163942 @default.
- W2784226073 cites W1979900513 @default.
- W2784226073 cites W1983464445 @default.
- W2784226073 cites W1985588649 @default.
- W2784226073 cites W1987202142 @default.
- W2784226073 cites W1989243440 @default.
- W2784226073 cites W1990399577 @default.
- W2784226073 cites W1996327711 @default.
- W2784226073 cites W1999985301 @default.
- W2784226073 cites W2007344527 @default.
- W2784226073 cites W2014837596 @default.
- W2784226073 cites W2019154446 @default.
- W2784226073 cites W2020106098 @default.
- W2784226073 cites W2021630848 @default.
- W2784226073 cites W2021929637 @default.
- W2784226073 cites W2030401184 @default.
- W2784226073 cites W2033757486 @default.
- W2784226073 cites W2037926034 @default.
- W2784226073 cites W2043950247 @default.
- W2784226073 cites W2053772923 @default.
- W2784226073 cites W2054198001 @default.
- W2784226073 cites W2056910808 @default.
- W2784226073 cites W2057069496 @default.
- W2784226073 cites W2058220696 @default.
- W2784226073 cites W2058965678 @default.
- W2784226073 cites W2069529061 @default.
- W2784226073 cites W2083497194 @default.
- W2784226073 cites W2091930973 @default.
- W2784226073 cites W2096560421 @default.
- W2784226073 cites W2099297532 @default.
- W2784226073 cites W2099757822 @default.
- W2784226073 cites W2100014056 @default.
- W2784226073 cites W2103581045 @default.
- W2784226073 cites W2108119152 @default.
- W2784226073 cites W2111225402 @default.
- W2784226073 cites W2113891687 @default.
- W2784226073 cites W2115086145 @default.
- W2784226073 cites W2115380778 @default.
- W2784226073 cites W2116238734 @default.
- W2784226073 cites W2119821739 @default.
- W2784226073 cites W2127553917 @default.
- W2784226073 cites W2128245586 @default.
- W2784226073 cites W2130343586 @default.
- W2784226073 cites W2131822674 @default.
- W2784226073 cites W2137653635 @default.
- W2784226073 cites W2141058555 @default.
- W2784226073 cites W2143481518 @default.
- W2784226073 cites W2148797284 @default.
- W2784226073 cites W2150555232 @default.
- W2784226073 cites W2155261478 @default.
- W2784226073 cites W2161645441 @default.
- W2784226073 cites W2163646378 @default.
- W2784226073 cites W2189675843 @default.
- W2784226073 cites W2213612645 @default.
- W2784226073 cites W2296589160 @default.
- W2784226073 cites W2323034105 @default.
- W2784226073 cites W2330317998 @default.
- W2784226073 cites W2338423545 @default.
- W2784226073 cites W2340782621 @default.
- W2784226073 cites W2467309505 @default.
- W2784226073 cites W2475857747 @default.
- W2784226073 cites W2525356667 @default.
- W2784226073 cites W2688390463 @default.
- W2784226073 cites W2736669548 @default.
- W2784226073 cites W2911964244 @default.
- W2784226073 cites W2952158693 @default.
- W2784226073 cites W4210448676 @default.
- W2784226073 cites W4238539954 @default.
- W2784226073 cites W4239873491 @default.
- W2784226073 cites W4250955420 @default.
- W2784226073 cites W4252427272 @default.
- W2784226073 cites W4254470479 @default.
- W2784226073 doi "https://doi.org/10.1186/s13321-017-0256-5" @default.
- W2784226073 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5770354" @default.
- W2784226073 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29340790" @default.
- W2784226073 hasPublicationYear "2018" @default.
- W2784226073 type Work @default.
- W2784226073 sameAs 2784226073 @default.
- W2784226073 citedByCount "53" @default.
- W2784226073 countsByYear W27842260732019 @default.
- W2784226073 countsByYear W27842260732020 @default.
- W2784226073 countsByYear W27842260732021 @default.
- W2784226073 countsByYear W27842260732022 @default.
- W2784226073 countsByYear W27842260732023 @default.
- W2784226073 crossrefType "journal-article" @default.