Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784283649> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2784283649 abstract "As more and more patients' checkup data are available in the hospital, such large data set contains lots of diagnosis information and can be used to predict specific diseases. In this paper, we use the machine learning method to train the model of the decision tree. Then the patient's physical examination data are used to extract the characteristics and the diagnosis information as the labels to train a prediction model. The model can predict whether the patient has lymphocytosis from the patient's physical examination information. The experimental results show that the accuracy rate is 98.2%, which demonstrates the proposed method can be applied well in predicting other diseases." @default.
- W2784283649 created "2018-01-26" @default.
- W2784283649 creator A5001349160 @default.
- W2784283649 creator A5006938103 @default.
- W2784283649 creator A5021656770 @default.
- W2784283649 creator A5035099734 @default.
- W2784283649 creator A5047023776 @default.
- W2784283649 date "2017-11-01" @default.
- W2784283649 modified "2023-09-27" @default.
- W2784283649 title "Prediction of lymphocytosis using machine learning algorithm based on checkup data" @default.
- W2784283649 cites W1587157779 @default.
- W2784283649 cites W2035549557 @default.
- W2784283649 cites W2043506470 @default.
- W2784283649 cites W2055819094 @default.
- W2784283649 cites W2149706766 @default.
- W2784283649 cites W2404272740 @default.
- W2784283649 cites W2414784122 @default.
- W2784283649 cites W814865806 @default.
- W2784283649 doi "https://doi.org/10.1109/icsai.2017.8248369" @default.
- W2784283649 hasPublicationYear "2017" @default.
- W2784283649 type Work @default.
- W2784283649 sameAs 2784283649 @default.
- W2784283649 citedByCount "2" @default.
- W2784283649 countsByYear W27842836492021 @default.
- W2784283649 crossrefType "proceedings-article" @default.
- W2784283649 hasAuthorship W2784283649A5001349160 @default.
- W2784283649 hasAuthorship W2784283649A5006938103 @default.
- W2784283649 hasAuthorship W2784283649A5021656770 @default.
- W2784283649 hasAuthorship W2784283649A5035099734 @default.
- W2784283649 hasAuthorship W2784283649A5047023776 @default.
- W2784283649 hasConcept C119857082 @default.
- W2784283649 hasConcept C124101348 @default.
- W2784283649 hasConcept C142724271 @default.
- W2784283649 hasConcept C154945302 @default.
- W2784283649 hasConcept C177264268 @default.
- W2784283649 hasConcept C199360897 @default.
- W2784283649 hasConcept C2780126324 @default.
- W2784283649 hasConcept C41008148 @default.
- W2784283649 hasConcept C5481197 @default.
- W2784283649 hasConcept C58489278 @default.
- W2784283649 hasConcept C71924100 @default.
- W2784283649 hasConcept C84525736 @default.
- W2784283649 hasConceptScore W2784283649C119857082 @default.
- W2784283649 hasConceptScore W2784283649C124101348 @default.
- W2784283649 hasConceptScore W2784283649C142724271 @default.
- W2784283649 hasConceptScore W2784283649C154945302 @default.
- W2784283649 hasConceptScore W2784283649C177264268 @default.
- W2784283649 hasConceptScore W2784283649C199360897 @default.
- W2784283649 hasConceptScore W2784283649C2780126324 @default.
- W2784283649 hasConceptScore W2784283649C41008148 @default.
- W2784283649 hasConceptScore W2784283649C5481197 @default.
- W2784283649 hasConceptScore W2784283649C58489278 @default.
- W2784283649 hasConceptScore W2784283649C71924100 @default.
- W2784283649 hasConceptScore W2784283649C84525736 @default.
- W2784283649 hasLocation W27842836491 @default.
- W2784283649 hasOpenAccess W2784283649 @default.
- W2784283649 hasPrimaryLocation W27842836491 @default.
- W2784283649 hasRelatedWork W1978508643 @default.
- W2784283649 hasRelatedWork W2024838795 @default.
- W2784283649 hasRelatedWork W2059995760 @default.
- W2784283649 hasRelatedWork W2541080943 @default.
- W2784283649 hasRelatedWork W2599756123 @default.
- W2784283649 hasRelatedWork W2610692412 @default.
- W2784283649 hasRelatedWork W2791693743 @default.
- W2784283649 hasRelatedWork W2795274718 @default.
- W2784283649 hasRelatedWork W2894878871 @default.
- W2784283649 hasRelatedWork W3049120262 @default.
- W2784283649 hasRelatedWork W3110912817 @default.
- W2784283649 hasRelatedWork W3118750161 @default.
- W2784283649 hasRelatedWork W3118937159 @default.
- W2784283649 hasRelatedWork W3128961361 @default.
- W2784283649 hasRelatedWork W3134663771 @default.
- W2784283649 hasRelatedWork W3198543900 @default.
- W2784283649 hasRelatedWork W44177890 @default.
- W2784283649 hasRelatedWork W2547834740 @default.
- W2784283649 hasRelatedWork W2556853483 @default.
- W2784283649 hasRelatedWork W2962515922 @default.
- W2784283649 isParatext "false" @default.
- W2784283649 isRetracted "false" @default.
- W2784283649 magId "2784283649" @default.
- W2784283649 workType "article" @default.