Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784397739> ?p ?o ?g. }
- W2784397739 abstract "We investigate a generalized two-dimensional time-dependent Schrödinger equation on a comb with a memory kernel. A Dirac delta term is introduced in the Schrödinger equation so that the quantum motion along the x-direction is constrained at y = 0. The wave function is analyzed by using Green’s function approach for several forms of the memory kernel, which are of particular interest. Closed form solutions for the cases of Dirac delta and power-law memory kernels in terms of Fox H-function, as well as for a distributed order memory kernel, are obtained. Further, a nonlocal term is also introduced and investigated analytically. It is shown that the solution for such a case can be represented in terms of infinite series in Fox H-functions. Green’s functions for each of the considered cases are analyzed and plotted for the most representative ones. Anomalous diffusion signatures are evident from the presence of the power-law tails. The normalized Green’s functions obtained in this work are of broader interest, as they are an important ingredient for further calculations and analyses of some interesting effects in the transport properties in low-dimensional heterogeneous media." @default.
- W2784397739 created "2018-02-02" @default.
- W2784397739 creator A5025406119 @default.
- W2784397739 creator A5053976837 @default.
- W2784397739 creator A5060481487 @default.
- W2784397739 date "2018-01-01" @default.
- W2784397739 modified "2023-10-16" @default.
- W2784397739 title "Generalized time-dependent Schrödinger equation in two dimensions under constraints" @default.
- W2784397739 cites W1964374925 @default.
- W2784397739 cites W1973352373 @default.
- W2784397739 cites W1981064385 @default.
- W2784397739 cites W1984367501 @default.
- W2784397739 cites W1986730777 @default.
- W2784397739 cites W1990970934 @default.
- W2784397739 cites W1997050292 @default.
- W2784397739 cites W2002300209 @default.
- W2784397739 cites W2006094879 @default.
- W2784397739 cites W2009561211 @default.
- W2784397739 cites W2011392076 @default.
- W2784397739 cites W2015020824 @default.
- W2784397739 cites W2016533177 @default.
- W2784397739 cites W2019633296 @default.
- W2784397739 cites W2020152356 @default.
- W2784397739 cites W2026414578 @default.
- W2784397739 cites W2026946703 @default.
- W2784397739 cites W2030200788 @default.
- W2784397739 cites W2030240279 @default.
- W2784397739 cites W2034837517 @default.
- W2784397739 cites W2048970305 @default.
- W2784397739 cites W2049310471 @default.
- W2784397739 cites W2056129332 @default.
- W2784397739 cites W2058933121 @default.
- W2784397739 cites W2063385616 @default.
- W2784397739 cites W2063656727 @default.
- W2784397739 cites W2080765493 @default.
- W2784397739 cites W2081972384 @default.
- W2784397739 cites W2086031034 @default.
- W2784397739 cites W2088382739 @default.
- W2784397739 cites W2091547490 @default.
- W2784397739 cites W2121323481 @default.
- W2784397739 cites W2123865918 @default.
- W2784397739 cites W2169948448 @default.
- W2784397739 cites W2214451506 @default.
- W2784397739 cites W2250670370 @default.
- W2784397739 cites W2284083188 @default.
- W2784397739 cites W2319406217 @default.
- W2784397739 cites W2321595441 @default.
- W2784397739 cites W2345649492 @default.
- W2784397739 cites W2345834663 @default.
- W2784397739 cites W2346047264 @default.
- W2784397739 cites W2390777022 @default.
- W2784397739 cites W2422766174 @default.
- W2784397739 cites W2466785343 @default.
- W2784397739 cites W2524591573 @default.
- W2784397739 cites W2527044911 @default.
- W2784397739 cites W2550563930 @default.
- W2784397739 cites W2605321438 @default.
- W2784397739 cites W2964265535 @default.
- W2784397739 cites W3098159936 @default.
- W2784397739 cites W3098232831 @default.
- W2784397739 cites W3099502493 @default.
- W2784397739 cites W3105421276 @default.
- W2784397739 cites W3106538158 @default.
- W2784397739 cites W3124607094 @default.
- W2784397739 doi "https://doi.org/10.1063/1.4996573" @default.
- W2784397739 hasPublicationYear "2018" @default.
- W2784397739 type Work @default.
- W2784397739 sameAs 2784397739 @default.
- W2784397739 citedByCount "11" @default.
- W2784397739 countsByYear W27843977392019 @default.
- W2784397739 countsByYear W27843977392020 @default.
- W2784397739 countsByYear W27843977392021 @default.
- W2784397739 countsByYear W27843977392023 @default.
- W2784397739 crossrefType "journal-article" @default.
- W2784397739 hasAuthorship W2784397739A5025406119 @default.
- W2784397739 hasAuthorship W2784397739A5053976837 @default.
- W2784397739 hasAuthorship W2784397739A5060481487 @default.
- W2784397739 hasConcept C113603373 @default.
- W2784397739 hasConcept C121332964 @default.
- W2784397739 hasConcept C134306372 @default.
- W2784397739 hasConcept C136264566 @default.
- W2784397739 hasConcept C14036430 @default.
- W2784397739 hasConcept C162324750 @default.
- W2784397739 hasConcept C186453547 @default.
- W2784397739 hasConcept C202444582 @default.
- W2784397739 hasConcept C2780378061 @default.
- W2784397739 hasConcept C33923547 @default.
- W2784397739 hasConcept C37914503 @default.
- W2784397739 hasConcept C54486999 @default.
- W2784397739 hasConcept C571446 @default.
- W2784397739 hasConcept C61039578 @default.
- W2784397739 hasConcept C62520636 @default.
- W2784397739 hasConcept C63036615 @default.
- W2784397739 hasConcept C74193536 @default.
- W2784397739 hasConcept C78458016 @default.
- W2784397739 hasConcept C82601208 @default.
- W2784397739 hasConcept C86803240 @default.
- W2784397739 hasConceptScore W2784397739C113603373 @default.
- W2784397739 hasConceptScore W2784397739C121332964 @default.
- W2784397739 hasConceptScore W2784397739C134306372 @default.