Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784522433> ?p ?o ?g. }
- W2784522433 endingPage "946" @default.
- W2784522433 startingPage "933" @default.
- W2784522433 abstract "High-dimensional non-Gaussian data are ubiquitous in many real applications. Face recognition is a typical example of such scenarios. The sampled face images of each person in the original data space are more closely located to each other than to those of the same individuals due to the changes of various conditions like illumination, pose variation, and facial expression. They are often non-Gaussian and differentiating the importance of each data point has been recognized as an effective approach to process the high-dimensional non-Gaussian data. In this paper, to embed non-Gaussian data well, we propose a novel unified framework named adaptive discriminative analysis (ADA), which combines the sample's importance measurement and subspace learning in a unified framework. Therefore, our ADA can preserve the within-class local structure and learn the discriminative transformation functions simultaneously by minimizing the distances of the projected samples within the same classes while maximizing the between-class separability. Meanwhile, an efficient method is developed to solve our formulated problem. Comprehensive analyses, including convergence behavior and parameter determination, together with the relationship to other related approaches, are as well presented. Systematical experiments are conducted to understand the work of our proposed ADA. Promising experimental results on various types of real-world benchmark data sets are provided to examine the effectiveness of our algorithm. Furthermore, we have also evaluated our method in face recognition. They all validate the effectiveness of our method on processing the high-dimensional non-Gaussian data." @default.
- W2784522433 created "2018-02-02" @default.
- W2784522433 creator A5003222421 @default.
- W2784522433 creator A5064728173 @default.
- W2784522433 creator A5074096377 @default.
- W2784522433 creator A5091529433 @default.
- W2784522433 date "2019-03-01" @default.
- W2784522433 modified "2023-10-06" @default.
- W2784522433 title "Dimension Reduction for Non-Gaussian Data by Adaptive Discriminative Analysis" @default.
- W2784522433 cites W1540007258 @default.
- W2784522433 cites W1678356000 @default.
- W2784522433 cites W1964762821 @default.
- W2784522433 cites W1975538958 @default.
- W2784522433 cites W2001141328 @default.
- W2784522433 cites W2001619934 @default.
- W2784522433 cites W2007453627 @default.
- W2784522433 cites W2052503369 @default.
- W2784522433 cites W2053186076 @default.
- W2784522433 cites W2076363162 @default.
- W2784522433 cites W2085535170 @default.
- W2784522433 cites W2105055468 @default.
- W2784522433 cites W2114217318 @default.
- W2784522433 cites W2117513046 @default.
- W2784522433 cites W2118796925 @default.
- W2784522433 cites W2123921160 @default.
- W2784522433 cites W2131081720 @default.
- W2784522433 cites W2137611320 @default.
- W2784522433 cites W2138516811 @default.
- W2784522433 cites W2144719328 @default.
- W2784522433 cites W2146987667 @default.
- W2784522433 cites W2151543530 @default.
- W2784522433 cites W2153635508 @default.
- W2784522433 cites W2154624311 @default.
- W2784522433 cites W2156571432 @default.
- W2784522433 cites W2157487910 @default.
- W2784522433 cites W2172000360 @default.
- W2784522433 cites W2212900262 @default.
- W2784522433 cites W2223051473 @default.
- W2784522433 cites W2399812666 @default.
- W2784522433 cites W2532523702 @default.
- W2784522433 cites W2739250163 @default.
- W2784522433 cites W4298082496 @default.
- W2784522433 doi "https://doi.org/10.1109/tcyb.2018.2789524" @default.
- W2784522433 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29994361" @default.
- W2784522433 hasPublicationYear "2019" @default.
- W2784522433 type Work @default.
- W2784522433 sameAs 2784522433 @default.
- W2784522433 citedByCount "27" @default.
- W2784522433 countsByYear W27845224332018 @default.
- W2784522433 countsByYear W27845224332019 @default.
- W2784522433 countsByYear W27845224332020 @default.
- W2784522433 countsByYear W27845224332021 @default.
- W2784522433 countsByYear W27845224332022 @default.
- W2784522433 countsByYear W27845224332023 @default.
- W2784522433 crossrefType "journal-article" @default.
- W2784522433 hasAuthorship W2784522433A5003222421 @default.
- W2784522433 hasAuthorship W2784522433A5064728173 @default.
- W2784522433 hasAuthorship W2784522433A5074096377 @default.
- W2784522433 hasAuthorship W2784522433A5091529433 @default.
- W2784522433 hasConcept C104317684 @default.
- W2784522433 hasConcept C11413529 @default.
- W2784522433 hasConcept C119857082 @default.
- W2784522433 hasConcept C121332964 @default.
- W2784522433 hasConcept C13280743 @default.
- W2784522433 hasConcept C144024400 @default.
- W2784522433 hasConcept C153180895 @default.
- W2784522433 hasConcept C154945302 @default.
- W2784522433 hasConcept C162324750 @default.
- W2784522433 hasConcept C163716315 @default.
- W2784522433 hasConcept C185592680 @default.
- W2784522433 hasConcept C185798385 @default.
- W2784522433 hasConcept C202444582 @default.
- W2784522433 hasConcept C204241405 @default.
- W2784522433 hasConcept C205649164 @default.
- W2784522433 hasConcept C2777303404 @default.
- W2784522433 hasConcept C2779304628 @default.
- W2784522433 hasConcept C31510193 @default.
- W2784522433 hasConcept C32834561 @default.
- W2784522433 hasConcept C33676613 @default.
- W2784522433 hasConcept C33923547 @default.
- W2784522433 hasConcept C36289849 @default.
- W2784522433 hasConcept C41008148 @default.
- W2784522433 hasConcept C50522688 @default.
- W2784522433 hasConcept C55493867 @default.
- W2784522433 hasConcept C61326573 @default.
- W2784522433 hasConcept C62520636 @default.
- W2784522433 hasConcept C70518039 @default.
- W2784522433 hasConcept C97931131 @default.
- W2784522433 hasConceptScore W2784522433C104317684 @default.
- W2784522433 hasConceptScore W2784522433C11413529 @default.
- W2784522433 hasConceptScore W2784522433C119857082 @default.
- W2784522433 hasConceptScore W2784522433C121332964 @default.
- W2784522433 hasConceptScore W2784522433C13280743 @default.
- W2784522433 hasConceptScore W2784522433C144024400 @default.
- W2784522433 hasConceptScore W2784522433C153180895 @default.
- W2784522433 hasConceptScore W2784522433C154945302 @default.
- W2784522433 hasConceptScore W2784522433C162324750 @default.
- W2784522433 hasConceptScore W2784522433C163716315 @default.