Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784760574> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2784760574 abstract "Surrogate modeling is a family of engineering techniques that attracts great interest today and can be applied in many challenging fields. A big advantage of it is that surrogate models (models based on these techniques) offer reliable results by being computationally cheaper than other candidate models. The savings in computational time is usually paramount for problems that involve a lot of variables and parameters and many iterative processes. In the wind energy industry in particular, the design of the best layout of the wind farm is a problem that has been presented in the literature as an optimization problem; that is, a problem to optimize the wind farm layout in respect to some objective the modeler deems appropriate. More often than not, maximizing the expected power of the layout is mainly considered as this objective. The layout's expected power is -- among other things -- heavily dependent on the layout and the wake interactions between the turbines. The iterative search among many layouts to find the best one can be done with the help of a well-known optimization tool, the binary genetic algorithm. However, this tool cannot work alone, it solely facilitates the search over an adequate number of candidate solutions. To make it work, the modeler should provide it with some model that assesses how good in terms of the objective that has been set. In this thesis therefore, the theory, the development and the use of two models of interest are investigated: Gaussian Process Regression (a surrogate model) and the Monte Carlo Method (a method based on random sampling). Great care was given to compile the theoretical basis of these models in order to be a good reference point for the non-experienced reader. The nature of these two models differs quite a bit, but they both can be used by the modeler to yield interesting results. These results will be compared to each other and against a third model's results, a specific wake model. This third model is the Original Model which the Gaussian Process Regression model and the Monte Carlo Method model utilize and compare against. The reliability of the results and computational speed will be the measure of success and ranking for these three models. Finally, the comparison of the three models continues in how potent they are to propose an optimized layout for a wind farm. Each of the three models is coupled with the binary genetic algorithm that is developed specifically to connect with them. Afterwards, the proposed best layouts are discussed. The results show that the Gaussian Process Regression model performs reliably and very fast in comparison to the Original model. On the other hand, the Monte Carlo model, although also fast when it is used to find an optimized layout, could not be verified that it performs reliably and therefore, its results cannot be trusted without going into further investigation. After the comparison, further discussion follows with some recommendations for future research." @default.
- W2784760574 created "2018-02-02" @default.
- W2784760574 creator A5013403959 @default.
- W2784760574 date "2018-01-01" @default.
- W2784760574 modified "2023-09-24" @default.
- W2784760574 title "Layout Optimization Methods for Offshore Wind Farms Using Gaussian Processes" @default.
- W2784760574 hasPublicationYear "2018" @default.
- W2784760574 type Work @default.
- W2784760574 sameAs 2784760574 @default.
- W2784760574 citedByCount "0" @default.
- W2784760574 crossrefType "journal-article" @default.
- W2784760574 hasAuthorship W2784760574A5013403959 @default.
- W2784760574 hasConcept C111919701 @default.
- W2784760574 hasConcept C119599485 @default.
- W2784760574 hasConcept C119857082 @default.
- W2784760574 hasConcept C126255220 @default.
- W2784760574 hasConcept C127413603 @default.
- W2784760574 hasConcept C131675550 @default.
- W2784760574 hasConcept C13736549 @default.
- W2784760574 hasConcept C177264268 @default.
- W2784760574 hasConcept C199360897 @default.
- W2784760574 hasConcept C33923547 @default.
- W2784760574 hasConcept C41008148 @default.
- W2784760574 hasConcept C78600449 @default.
- W2784760574 hasConcept C8735168 @default.
- W2784760574 hasConcept C8880873 @default.
- W2784760574 hasConcept C98045186 @default.
- W2784760574 hasConceptScore W2784760574C111919701 @default.
- W2784760574 hasConceptScore W2784760574C119599485 @default.
- W2784760574 hasConceptScore W2784760574C119857082 @default.
- W2784760574 hasConceptScore W2784760574C126255220 @default.
- W2784760574 hasConceptScore W2784760574C127413603 @default.
- W2784760574 hasConceptScore W2784760574C131675550 @default.
- W2784760574 hasConceptScore W2784760574C13736549 @default.
- W2784760574 hasConceptScore W2784760574C177264268 @default.
- W2784760574 hasConceptScore W2784760574C199360897 @default.
- W2784760574 hasConceptScore W2784760574C33923547 @default.
- W2784760574 hasConceptScore W2784760574C41008148 @default.
- W2784760574 hasConceptScore W2784760574C78600449 @default.
- W2784760574 hasConceptScore W2784760574C8735168 @default.
- W2784760574 hasConceptScore W2784760574C8880873 @default.
- W2784760574 hasConceptScore W2784760574C98045186 @default.
- W2784760574 hasLocation W27847605741 @default.
- W2784760574 hasOpenAccess W2784760574 @default.
- W2784760574 hasPrimaryLocation W27847605741 @default.
- W2784760574 hasRelatedWork W1479490090 @default.
- W2784760574 hasRelatedWork W154142634 @default.
- W2784760574 hasRelatedWork W1583297545 @default.
- W2784760574 hasRelatedWork W1597097371 @default.
- W2784760574 hasRelatedWork W1989062954 @default.
- W2784760574 hasRelatedWork W2042688747 @default.
- W2784760574 hasRelatedWork W2199207265 @default.
- W2784760574 hasRelatedWork W2224584834 @default.
- W2784760574 hasRelatedWork W2246502932 @default.
- W2784760574 hasRelatedWork W2289490314 @default.
- W2784760574 hasRelatedWork W2291146032 @default.
- W2784760574 hasRelatedWork W2321297826 @default.
- W2784760574 hasRelatedWork W2529403959 @default.
- W2784760574 hasRelatedWork W2758204860 @default.
- W2784760574 hasRelatedWork W2804961357 @default.
- W2784760574 hasRelatedWork W286657153 @default.
- W2784760574 hasRelatedWork W3114705373 @default.
- W2784760574 hasRelatedWork W402878084 @default.
- W2784760574 hasRelatedWork W627290312 @default.
- W2784760574 hasRelatedWork W2186334964 @default.
- W2784760574 isParatext "false" @default.
- W2784760574 isRetracted "false" @default.
- W2784760574 magId "2784760574" @default.
- W2784760574 workType "article" @default.