Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784795157> ?p ?o ?g. }
- W2784795157 endingPage "579" @default.
- W2784795157 startingPage "559" @default.
- W2784795157 abstract "Thermal fluid processes are inherently multi-physics and multi-scale, involving mass-momentum-energy transport phenomena. Thermal fluid simulation (TFS) is based on solving conservative equations, for which - except for first-principle direct numerical simulation - closure relations (CRs) are required to provide microscopic interactions. In practice, TFS is realized through reduced-order modeling, and its CRs can be informed by observations and data from relevant and adequately evaluated experiments and high-fidelity simulations. This paper focuses on data-driven TFS models, specifically on the development using machine learning (ML). Five ML frameworks, dubbed Type I to V, are introduced. The frameworks vary in their performance for different applications depending on the level of knowledge of governing physics, the source, type, amount and quality of available data for training. Notably, outlined for the first time in this paper, Type III models present stringent requirements on modeling, substantial computing resources for training, and high potential in extracting value from big data in thermal fluid research. The paper demonstrates the ML frameworks by three examples. First, we utilize the heat diffusion equation with nonlinear conductivity formulated by convolutional neural networks to illustrate the applications of Type I, II, and III ML. The results indicate a preference for Type II ML under deficient data support. Type III ML can effectively utilize field data, potentially generating more robust predictions than Type I and II ML. Second, we illustrate how to employ Type I ML and Type II ML frameworks for data-driven turbulence modeling using reference works. Third, we demonstrate Type I ML by building a deep learning (DL)-based slip closure for two-phase flow modeling. The results showe that the DL-based closure exhibits a bounded error in prediction domain." @default.
- W2784795157 created "2018-02-02" @default.
- W2784795157 creator A5062115647 @default.
- W2784795157 creator A5069550444 @default.
- W2784795157 date "2019-01-01" @default.
- W2784795157 modified "2023-10-14" @default.
- W2784795157 title "Classification of machine learning frameworks for data-driven thermal fluid models" @default.
- W2784795157 cites W1528439235 @default.
- W2784795157 cites W1879942928 @default.
- W2784795157 cites W1965957586 @default.
- W2784795157 cites W1971855702 @default.
- W2784795157 cites W1976377288 @default.
- W2784795157 cites W1995421120 @default.
- W2784795157 cites W2002414528 @default.
- W2784795157 cites W2048225889 @default.
- W2784795157 cites W2064076279 @default.
- W2784795157 cites W2089858332 @default.
- W2784795157 cites W2110301637 @default.
- W2784795157 cites W2110418811 @default.
- W2784795157 cites W2112796928 @default.
- W2784795157 cites W2137983211 @default.
- W2784795157 cites W2150853446 @default.
- W2784795157 cites W2239232218 @default.
- W2784795157 cites W2301471268 @default.
- W2784795157 cites W2344479506 @default.
- W2784795157 cites W2345737627 @default.
- W2784795157 cites W2410820041 @default.
- W2784795157 cites W2414896368 @default.
- W2784795157 cites W2461338316 @default.
- W2784795157 cites W2530973484 @default.
- W2784795157 cites W2532100619 @default.
- W2784795157 cites W2534240011 @default.
- W2784795157 cites W2564800775 @default.
- W2784795157 cites W2585298970 @default.
- W2784795157 cites W3105469151 @default.
- W2784795157 cites W4254924190 @default.
- W2784795157 doi "https://doi.org/10.1016/j.ijthermalsci.2018.09.002" @default.
- W2784795157 hasPublicationYear "2019" @default.
- W2784795157 type Work @default.
- W2784795157 sameAs 2784795157 @default.
- W2784795157 citedByCount "58" @default.
- W2784795157 countsByYear W27847951572018 @default.
- W2784795157 countsByYear W27847951572019 @default.
- W2784795157 countsByYear W27847951572020 @default.
- W2784795157 countsByYear W27847951572021 @default.
- W2784795157 countsByYear W27847951572022 @default.
- W2784795157 countsByYear W27847951572023 @default.
- W2784795157 crossrefType "journal-article" @default.
- W2784795157 hasAuthorship W2784795157A5062115647 @default.
- W2784795157 hasAuthorship W2784795157A5069550444 @default.
- W2784795157 hasBestOaLocation W27847951571 @default.
- W2784795157 hasConcept C119857082 @default.
- W2784795157 hasConcept C121332964 @default.
- W2784795157 hasConcept C138958017 @default.
- W2784795157 hasConcept C154945302 @default.
- W2784795157 hasConcept C158622935 @default.
- W2784795157 hasConcept C18903297 @default.
- W2784795157 hasConcept C199360897 @default.
- W2784795157 hasConcept C202444582 @default.
- W2784795157 hasConcept C202787564 @default.
- W2784795157 hasConcept C2777299769 @default.
- W2784795157 hasConcept C33923547 @default.
- W2784795157 hasConcept C41008148 @default.
- W2784795157 hasConcept C50644808 @default.
- W2784795157 hasConcept C62520636 @default.
- W2784795157 hasConcept C86803240 @default.
- W2784795157 hasConcept C9652623 @default.
- W2784795157 hasConcept C97346530 @default.
- W2784795157 hasConcept C97355855 @default.
- W2784795157 hasConceptScore W2784795157C119857082 @default.
- W2784795157 hasConceptScore W2784795157C121332964 @default.
- W2784795157 hasConceptScore W2784795157C138958017 @default.
- W2784795157 hasConceptScore W2784795157C154945302 @default.
- W2784795157 hasConceptScore W2784795157C158622935 @default.
- W2784795157 hasConceptScore W2784795157C18903297 @default.
- W2784795157 hasConceptScore W2784795157C199360897 @default.
- W2784795157 hasConceptScore W2784795157C202444582 @default.
- W2784795157 hasConceptScore W2784795157C202787564 @default.
- W2784795157 hasConceptScore W2784795157C2777299769 @default.
- W2784795157 hasConceptScore W2784795157C33923547 @default.
- W2784795157 hasConceptScore W2784795157C41008148 @default.
- W2784795157 hasConceptScore W2784795157C50644808 @default.
- W2784795157 hasConceptScore W2784795157C62520636 @default.
- W2784795157 hasConceptScore W2784795157C86803240 @default.
- W2784795157 hasConceptScore W2784795157C9652623 @default.
- W2784795157 hasConceptScore W2784795157C97346530 @default.
- W2784795157 hasConceptScore W2784795157C97355855 @default.
- W2784795157 hasFunder F4320306084 @default.
- W2784795157 hasFunder F4320337546 @default.
- W2784795157 hasLocation W27847951571 @default.
- W2784795157 hasLocation W27847951572 @default.
- W2784795157 hasLocation W27847951573 @default.
- W2784795157 hasOpenAccess W2784795157 @default.
- W2784795157 hasPrimaryLocation W27847951571 @default.
- W2784795157 hasRelatedWork W2961085424 @default.
- W2784795157 hasRelatedWork W4286629047 @default.
- W2784795157 hasRelatedWork W4288754364 @default.
- W2784795157 hasRelatedWork W4306321456 @default.