Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784834174> ?p ?o ?g. }
- W2784834174 endingPage "495" @default.
- W2784834174 startingPage "478" @default.
- W2784834174 abstract "Support vector machine (SVM) is considered to be one of the most powerful learning algorithms and is used for a wide range of real-world applications. The efficiency of SVM algorithm and its performance mainly depends on the kernel type and its parameters. Furthermore, the feature subset selection that is used to train the SVM model is another important factor that has a major influence on it classification accuracy. The feature subset selection is a very important step in machine learning, specially when dealing with high-dimensional data sets. Most of the previous researches handled these important factors separately. In this paper, we propose a hybrid approach based on the Grasshopper optimisation algorithm (GOA), which is a recent algorithm inspired by the biological behavior shown in swarms of grasshoppers. The goal of the proposed approach is to optimize the parameters of the SVM model, and locate the best features subset simultaneously. Eighteen low- and high-dimensional benchmark data sets are used to evaluate the accuracy of the proposed approach. For verification, the proposed approach is compared with seven well-regarded algorithms. Furthermore, the proposed approach is compared with grid search, which is the most popular technique for tuning SVM parameters. The experimental results show that the proposed approach outperforms all of the other techniques in most of the data sets in terms of classification accuracy, while minimizing the number of selected features." @default.
- W2784834174 created "2018-02-02" @default.
- W2784834174 creator A5000496259 @default.
- W2784834174 creator A5023882029 @default.
- W2784834174 creator A5042798851 @default.
- W2784834174 creator A5048560390 @default.
- W2784834174 creator A5088315501 @default.
- W2784834174 creator A5091500375 @default.
- W2784834174 date "2018-01-19" @default.
- W2784834174 modified "2023-10-09" @default.
- W2784834174 title "Simultaneous Feature Selection and Support Vector Machine Optimization Using the Grasshopper Optimization Algorithm" @default.
- W2784834174 cites W1601701149 @default.
- W2784834174 cites W1672197616 @default.
- W2784834174 cites W1963802829 @default.
- W2784834174 cites W1965202052 @default.
- W2784834174 cites W1965887948 @default.
- W2784834174 cites W1976744965 @default.
- W2784834174 cites W1997313699 @default.
- W2784834174 cites W2001565634 @default.
- W2784834174 cites W2017337590 @default.
- W2784834174 cites W2020355555 @default.
- W2784834174 cites W2023961611 @default.
- W2784834174 cites W2031183907 @default.
- W2784834174 cites W2031366272 @default.
- W2784834174 cites W2039945291 @default.
- W2784834174 cites W2047466806 @default.
- W2784834174 cites W2052524226 @default.
- W2784834174 cites W2059115408 @default.
- W2784834174 cites W2061438946 @default.
- W2784834174 cites W2065037241 @default.
- W2784834174 cites W2076300071 @default.
- W2784834174 cites W2082776647 @default.
- W2784834174 cites W2087347434 @default.
- W2784834174 cites W2096914182 @default.
- W2784834174 cites W2103666183 @default.
- W2784834174 cites W2124258777 @default.
- W2784834174 cites W2149298154 @default.
- W2784834174 cites W2151554678 @default.
- W2784834174 cites W2162275200 @default.
- W2784834174 cites W2165828254 @default.
- W2784834174 cites W2257790963 @default.
- W2784834174 cites W2290402024 @default.
- W2784834174 cites W2336601034 @default.
- W2784834174 cites W2401932923 @default.
- W2784834174 cites W2411820260 @default.
- W2784834174 cites W2472012120 @default.
- W2784834174 cites W2487770199 @default.
- W2784834174 cites W2513075559 @default.
- W2784834174 cites W2516969599 @default.
- W2784834174 cites W2553852618 @default.
- W2784834174 cites W2558059637 @default.
- W2784834174 cites W2559872199 @default.
- W2784834174 cites W2585392941 @default.
- W2784834174 cites W2586902980 @default.
- W2784834174 cites W2590142046 @default.
- W2784834174 cites W2606935321 @default.
- W2784834174 cites W2742961367 @default.
- W2784834174 cites W2770073247 @default.
- W2784834174 cites W3098924781 @default.
- W2784834174 cites W3105346980 @default.
- W2784834174 doi "https://doi.org/10.1007/s12559-017-9542-9" @default.
- W2784834174 hasPublicationYear "2018" @default.
- W2784834174 type Work @default.
- W2784834174 sameAs 2784834174 @default.
- W2784834174 citedByCount "180" @default.
- W2784834174 countsByYear W27848341742018 @default.
- W2784834174 countsByYear W27848341742019 @default.
- W2784834174 countsByYear W27848341742020 @default.
- W2784834174 countsByYear W27848341742021 @default.
- W2784834174 countsByYear W27848341742022 @default.
- W2784834174 countsByYear W27848341742023 @default.
- W2784834174 crossrefType "journal-article" @default.
- W2784834174 hasAuthorship W2784834174A5000496259 @default.
- W2784834174 hasAuthorship W2784834174A5023882029 @default.
- W2784834174 hasAuthorship W2784834174A5042798851 @default.
- W2784834174 hasAuthorship W2784834174A5048560390 @default.
- W2784834174 hasAuthorship W2784834174A5088315501 @default.
- W2784834174 hasAuthorship W2784834174A5091500375 @default.
- W2784834174 hasBestOaLocation W27848341742 @default.
- W2784834174 hasConcept C11413529 @default.
- W2784834174 hasConcept C119857082 @default.
- W2784834174 hasConcept C12267149 @default.
- W2784834174 hasConcept C126255220 @default.
- W2784834174 hasConcept C138885662 @default.
- W2784834174 hasConcept C148483581 @default.
- W2784834174 hasConcept C153180895 @default.
- W2784834174 hasConcept C154945302 @default.
- W2784834174 hasConcept C18903297 @default.
- W2784834174 hasConcept C2776401178 @default.
- W2784834174 hasConcept C2778575915 @default.
- W2784834174 hasConcept C2987595161 @default.
- W2784834174 hasConcept C33923547 @default.
- W2784834174 hasConcept C41008148 @default.
- W2784834174 hasConcept C41895202 @default.
- W2784834174 hasConcept C81917197 @default.
- W2784834174 hasConcept C86803240 @default.
- W2784834174 hasConceptScore W2784834174C11413529 @default.
- W2784834174 hasConceptScore W2784834174C119857082 @default.