Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784927274> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2784927274 abstract "The development of autonomous vehicles garnered an increasing amount of attention in recent years. The interest for automotive industries is to produce safer and more user friendly cars. A common reason behind most traffic accidents is the failure on the part of the driver to adequately monitor the vehicle's surroundings. In this thesis we address the problem of estimating the collision risk for a vehicle for the next few seconds in urban traffic conditions. Current commercially available crash warning systems are usually equipped with radar based sensors on the front, rear or sides to measure the velocity and distance to obstacles. The algorithms for determining the risk of collision are based on variants of time-to-collision (TTC). However, it might be misleading in situations where the roads are curved and the assumption that motion is linear does not hold. In these situations, the risk tends to be underestimated. Furthermore, instances of roads which are not straight can be commonly found in urban environments, like the roundabout or cross junctions. An argument of this thesis is that simply knowing that there is an object at a certain location at a specific instance in time does not provide sufficient information to asses its safety. A framework for understanding behaviours of vehicle motion is indispensable. In addition, environmental constraints should be taken into account especially for urban traffic environments. A bottom up approach towards the final goal of constructing a model to estimate the risk of collision for a vehicle is presented. The simpler case of “free” motion is first presented. The thesis then proposes to take collision risk estimation further by being more “environmentally aware” where environmental structures and constraints are explicitly taken into account for urban traffic scenarios. This thesis proposes a complete probabilistic model motion at the trajectory level based the Gaussian Process (GP). Its advantage over current methods is that it is able to express future motion independently of state space discretization. Driving behaviours are modelled with a variant of the Hidden Markov Model. The combination of these two models provides a complete probabilistic model for vehicle evolution in time. Additionally a general method of probabilistically evaluating collision risk is presented, where different forms of risk values with different semantics can be obtained, depending on its applications." @default.
- W2784927274 created "2018-02-02" @default.
- W2784927274 creator A5090398548 @default.
- W2784927274 date "2009-09-04" @default.
- W2784927274 modified "2023-09-26" @default.
- W2784927274 title "Analysis of Dynamic Scenes: Application to Driving Assistance" @default.
- W2784927274 cites W1510355813 @default.
- W2784927274 cites W1847116105 @default.
- W2784927274 cites W2037865596 @default.
- W2784927274 cites W2128934793 @default.
- W2784927274 hasPublicationYear "2009" @default.
- W2784927274 type Work @default.
- W2784927274 sameAs 2784927274 @default.
- W2784927274 citedByCount "7" @default.
- W2784927274 countsByYear W27849272742012 @default.
- W2784927274 countsByYear W27849272742013 @default.
- W2784927274 countsByYear W27849272742016 @default.
- W2784927274 countsByYear W27849272742017 @default.
- W2784927274 countsByYear W27849272742021 @default.
- W2784927274 crossrefType "dissertation" @default.
- W2784927274 hasAuthorship W2784927274A5090398548 @default.
- W2784927274 hasConcept C121704057 @default.
- W2784927274 hasConcept C127413603 @default.
- W2784927274 hasConcept C154945302 @default.
- W2784927274 hasConcept C183469790 @default.
- W2784927274 hasConcept C199360897 @default.
- W2784927274 hasConcept C22212356 @default.
- W2784927274 hasConcept C2776654903 @default.
- W2784927274 hasConcept C38652104 @default.
- W2784927274 hasConcept C41008148 @default.
- W2784927274 hasConcept C44154836 @default.
- W2784927274 hasConcept C87833898 @default.
- W2784927274 hasConceptScore W2784927274C121704057 @default.
- W2784927274 hasConceptScore W2784927274C127413603 @default.
- W2784927274 hasConceptScore W2784927274C154945302 @default.
- W2784927274 hasConceptScore W2784927274C183469790 @default.
- W2784927274 hasConceptScore W2784927274C199360897 @default.
- W2784927274 hasConceptScore W2784927274C22212356 @default.
- W2784927274 hasConceptScore W2784927274C2776654903 @default.
- W2784927274 hasConceptScore W2784927274C38652104 @default.
- W2784927274 hasConceptScore W2784927274C41008148 @default.
- W2784927274 hasConceptScore W2784927274C44154836 @default.
- W2784927274 hasConceptScore W2784927274C87833898 @default.
- W2784927274 hasLocation W27849272741 @default.
- W2784927274 hasOpenAccess W2784927274 @default.
- W2784927274 hasPrimaryLocation W27849272741 @default.
- W2784927274 hasRelatedWork W1965455100 @default.
- W2784927274 hasRelatedWork W1966312294 @default.
- W2784927274 hasRelatedWork W1985747877 @default.
- W2784927274 hasRelatedWork W2048093873 @default.
- W2784927274 hasRelatedWork W2079150870 @default.
- W2784927274 hasRelatedWork W2097545165 @default.
- W2784927274 hasRelatedWork W2098450792 @default.
- W2784927274 hasRelatedWork W2098794415 @default.
- W2784927274 hasRelatedWork W2123665586 @default.
- W2784927274 hasRelatedWork W2131762276 @default.
- W2784927274 hasRelatedWork W2139391802 @default.
- W2784927274 hasRelatedWork W2155295407 @default.
- W2784927274 hasRelatedWork W2166813035 @default.
- W2784927274 hasRelatedWork W2294439372 @default.
- W2784927274 hasRelatedWork W2539337444 @default.
- W2784927274 hasRelatedWork W2794590770 @default.
- W2784927274 hasRelatedWork W2897623894 @default.
- W2784927274 hasRelatedWork W2988914311 @default.
- W2784927274 hasRelatedWork W3120263807 @default.
- W2784927274 hasRelatedWork W2934009366 @default.
- W2784927274 isParatext "false" @default.
- W2784927274 isRetracted "false" @default.
- W2784927274 magId "2784927274" @default.
- W2784927274 workType "dissertation" @default.