Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784948614> ?p ?o ?g. }
- W2784948614 endingPage "1819" @default.
- W2784948614 startingPage "1811" @default.
- W2784948614 abstract "A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ ." @default.
- W2784948614 created "2018-02-02" @default.
- W2784948614 creator A5006830807 @default.
- W2784948614 creator A5034077469 @default.
- W2784948614 creator A5046081846 @default.
- W2784948614 creator A5065738674 @default.
- W2784948614 date "2018-01-19" @default.
- W2784948614 modified "2023-10-16" @default.
- W2784948614 title "Prediction of Protein Configurational Entropy (Popcoen)" @default.
- W2784948614 cites W1548178570 @default.
- W2784948614 cites W1558188591 @default.
- W2784948614 cites W1963697504 @default.
- W2784948614 cites W1990387274 @default.
- W2784948614 cites W2002452896 @default.
- W2784948614 cites W2011059718 @default.
- W2784948614 cites W2022101724 @default.
- W2784948614 cites W2023490488 @default.
- W2784948614 cites W2026467865 @default.
- W2784948614 cites W2027802290 @default.
- W2784948614 cites W2035271784 @default.
- W2784948614 cites W2038705003 @default.
- W2784948614 cites W2039735678 @default.
- W2784948614 cites W2061543974 @default.
- W2784948614 cites W2066332174 @default.
- W2784948614 cites W2073758233 @default.
- W2784948614 cites W2074400988 @default.
- W2784948614 cites W2076063813 @default.
- W2784948614 cites W2079875740 @default.
- W2784948614 cites W2087076600 @default.
- W2784948614 cites W2092387745 @default.
- W2784948614 cites W2096914244 @default.
- W2784948614 cites W2110483430 @default.
- W2784948614 cites W2129454543 @default.
- W2784948614 cites W2134731229 @default.
- W2784948614 cites W2144886570 @default.
- W2784948614 cites W2147988069 @default.
- W2784948614 cites W2160868144 @default.
- W2784948614 cites W2163333444 @default.
- W2784948614 cites W2165011779 @default.
- W2784948614 cites W2168629258 @default.
- W2784948614 cites W2170671445 @default.
- W2784948614 cites W2171559274 @default.
- W2784948614 cites W2309102191 @default.
- W2784948614 cites W2325292213 @default.
- W2784948614 cites W2963446712 @default.
- W2784948614 cites W4299790875 @default.
- W2784948614 doi "https://doi.org/10.1021/acs.jctc.7b01079" @default.
- W2784948614 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29351717" @default.
- W2784948614 hasPublicationYear "2018" @default.
- W2784948614 type Work @default.
- W2784948614 sameAs 2784948614 @default.
- W2784948614 citedByCount "11" @default.
- W2784948614 countsByYear W27849486142018 @default.
- W2784948614 countsByYear W27849486142019 @default.
- W2784948614 countsByYear W27849486142020 @default.
- W2784948614 countsByYear W27849486142021 @default.
- W2784948614 countsByYear W27849486142022 @default.
- W2784948614 crossrefType "journal-article" @default.
- W2784948614 hasAuthorship W2784948614A5006830807 @default.
- W2784948614 hasAuthorship W2784948614A5034077469 @default.
- W2784948614 hasAuthorship W2784948614A5046081846 @default.
- W2784948614 hasAuthorship W2784948614A5065738674 @default.
- W2784948614 hasConcept C106301342 @default.
- W2784948614 hasConcept C11413529 @default.
- W2784948614 hasConcept C121332964 @default.
- W2784948614 hasConcept C121864883 @default.
- W2784948614 hasConcept C124101348 @default.
- W2784948614 hasConcept C124589349 @default.
- W2784948614 hasConcept C178790620 @default.
- W2784948614 hasConcept C185592680 @default.
- W2784948614 hasConcept C186060115 @default.
- W2784948614 hasConcept C199360897 @default.
- W2784948614 hasConcept C2777904410 @default.
- W2784948614 hasConcept C32909587 @default.
- W2784948614 hasConcept C41008148 @default.
- W2784948614 hasConcept C69308434 @default.
- W2784948614 hasConcept C86803240 @default.
- W2784948614 hasConcept C97355855 @default.
- W2784948614 hasConceptScore W2784948614C106301342 @default.
- W2784948614 hasConceptScore W2784948614C11413529 @default.
- W2784948614 hasConceptScore W2784948614C121332964 @default.
- W2784948614 hasConceptScore W2784948614C121864883 @default.
- W2784948614 hasConceptScore W2784948614C124101348 @default.
- W2784948614 hasConceptScore W2784948614C124589349 @default.
- W2784948614 hasConceptScore W2784948614C178790620 @default.
- W2784948614 hasConceptScore W2784948614C185592680 @default.
- W2784948614 hasConceptScore W2784948614C186060115 @default.
- W2784948614 hasConceptScore W2784948614C199360897 @default.
- W2784948614 hasConceptScore W2784948614C2777904410 @default.
- W2784948614 hasConceptScore W2784948614C32909587 @default.
- W2784948614 hasConceptScore W2784948614C41008148 @default.
- W2784948614 hasConceptScore W2784948614C69308434 @default.
- W2784948614 hasConceptScore W2784948614C86803240 @default.
- W2784948614 hasConceptScore W2784948614C97355855 @default.
- W2784948614 hasIssue "3" @default.
- W2784948614 hasLocation W27849486141 @default.
- W2784948614 hasLocation W27849486142 @default.
- W2784948614 hasOpenAccess W2784948614 @default.