Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785144635> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2785144635 abstract "Abstract Convolutional neural networks (CNN) have been shown to outperform conventional methods in DNA-protien binding specificity prediction. However, whether we can transfer this success to protien-peptide binding affinity prediction depends on appropriate design of the CNN architectue that calls for thorough understanding how to match the architecture to the problem. Here we propose DeepMHC, a deep convolutional neural network (CNN) based protein-peptide binding prediction algorithm for achieving better performance in MHC-I peptide binding affinity prediction than conventional algorithms. Our model takes only raw binding peptide sequences as input without needing any human-designed features and othe physichochemical or evolutionary information of the amino acids. Our CNN models are shown to be able to learn non-linear relationships among the amino acid positions of the peptides to achieve highly competitive performance on most of the IEDB benchmark datasets with a single model architecture and without using any consensus or composite ensemble classifier models. By systematically exploring the best CNN architecture, we identified critical design considerations in CNN architecture development for peptide-MHC binding prediction." @default.
- W2785144635 created "2018-02-02" @default.
- W2785144635 creator A5059343631 @default.
- W2785144635 creator A5060537711 @default.
- W2785144635 date "2017-12-24" @default.
- W2785144635 modified "2023-10-18" @default.
- W2785144635 title "DeepMHC: Deep Convolutional Neural Networks for High-performance peptide-MHC Binding Affinity Prediction" @default.
- W2785144635 cites W1019830208 @default.
- W2785144635 cites W1768175145 @default.
- W2785144635 cites W1991461541 @default.
- W2785144635 cites W2000305183 @default.
- W2785144635 cites W2012523084 @default.
- W2785144635 cites W2019711015 @default.
- W2785144635 cites W2069094890 @default.
- W2785144635 cites W2110574412 @default.
- W2785144635 cites W2110694683 @default.
- W2785144635 cites W2121675051 @default.
- W2785144635 cites W2125732073 @default.
- W2785144635 cites W2134182833 @default.
- W2785144635 cites W2148146008 @default.
- W2785144635 cites W2154509769 @default.
- W2785144635 cites W2154987621 @default.
- W2785144635 cites W2166570238 @default.
- W2785144635 cites W2168688111 @default.
- W2785144635 cites W2173096527 @default.
- W2785144635 cites W2271914738 @default.
- W2785144635 cites W2326870000 @default.
- W2785144635 cites W2395579298 @default.
- W2785144635 cites W2433743436 @default.
- W2785144635 cites W2579525649 @default.
- W2785144635 cites W2721701181 @default.
- W2785144635 cites W2949588195 @default.
- W2785144635 cites W2952935243 @default.
- W2785144635 doi "https://doi.org/10.1101/239236" @default.
- W2785144635 hasPublicationYear "2017" @default.
- W2785144635 type Work @default.
- W2785144635 sameAs 2785144635 @default.
- W2785144635 citedByCount "19" @default.
- W2785144635 countsByYear W27851446352018 @default.
- W2785144635 countsByYear W27851446352019 @default.
- W2785144635 countsByYear W27851446352020 @default.
- W2785144635 countsByYear W27851446352021 @default.
- W2785144635 countsByYear W27851446352022 @default.
- W2785144635 countsByYear W27851446352023 @default.
- W2785144635 crossrefType "posted-content" @default.
- W2785144635 hasAuthorship W2785144635A5059343631 @default.
- W2785144635 hasAuthorship W2785144635A5060537711 @default.
- W2785144635 hasBestOaLocation W27851446351 @default.
- W2785144635 hasConcept C108583219 @default.
- W2785144635 hasConcept C119857082 @default.
- W2785144635 hasConcept C13280743 @default.
- W2785144635 hasConcept C154945302 @default.
- W2785144635 hasConcept C185798385 @default.
- W2785144635 hasConcept C205649164 @default.
- W2785144635 hasConcept C2779281246 @default.
- W2785144635 hasConcept C41008148 @default.
- W2785144635 hasConcept C50644808 @default.
- W2785144635 hasConcept C55493867 @default.
- W2785144635 hasConcept C70721500 @default.
- W2785144635 hasConcept C81363708 @default.
- W2785144635 hasConcept C86803240 @default.
- W2785144635 hasConcept C95623464 @default.
- W2785144635 hasConceptScore W2785144635C108583219 @default.
- W2785144635 hasConceptScore W2785144635C119857082 @default.
- W2785144635 hasConceptScore W2785144635C13280743 @default.
- W2785144635 hasConceptScore W2785144635C154945302 @default.
- W2785144635 hasConceptScore W2785144635C185798385 @default.
- W2785144635 hasConceptScore W2785144635C205649164 @default.
- W2785144635 hasConceptScore W2785144635C2779281246 @default.
- W2785144635 hasConceptScore W2785144635C41008148 @default.
- W2785144635 hasConceptScore W2785144635C50644808 @default.
- W2785144635 hasConceptScore W2785144635C55493867 @default.
- W2785144635 hasConceptScore W2785144635C70721500 @default.
- W2785144635 hasConceptScore W2785144635C81363708 @default.
- W2785144635 hasConceptScore W2785144635C86803240 @default.
- W2785144635 hasConceptScore W2785144635C95623464 @default.
- W2785144635 hasLocation W27851446351 @default.
- W2785144635 hasOpenAccess W2785144635 @default.
- W2785144635 hasPrimaryLocation W27851446351 @default.
- W2785144635 hasRelatedWork W2731899572 @default.
- W2785144635 hasRelatedWork W2999805992 @default.
- W2785144635 hasRelatedWork W3116150086 @default.
- W2785144635 hasRelatedWork W3133861977 @default.
- W2785144635 hasRelatedWork W4200173597 @default.
- W2785144635 hasRelatedWork W4223943233 @default.
- W2785144635 hasRelatedWork W4291897433 @default.
- W2785144635 hasRelatedWork W4312417841 @default.
- W2785144635 hasRelatedWork W4321369474 @default.
- W2785144635 hasRelatedWork W4380075502 @default.
- W2785144635 isParatext "false" @default.
- W2785144635 isRetracted "false" @default.
- W2785144635 magId "2785144635" @default.
- W2785144635 workType "article" @default.