Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785173893> ?p ?o ?g. }
- W2785173893 endingPage "3574" @default.
- W2785173893 startingPage "3561" @default.
- W2785173893 abstract "Abstract. Fluid flow in a charged porous medium generates electric potentials called streaming potential (SP). The SP signal is related to both hydraulic and electrical properties of the soil. In this work, global sensitivity analysis (GSA) and parameter estimation procedures are performed to assess the influence of hydraulic and geophysical parameters on the SP signals and to investigate the identifiability of these parameters from SP measurements. Both procedures are applied to a synthetic column experiment involving a falling head infiltration phase followed by a drainage phase. GSA is used through variance-based sensitivity indices, calculated using sparse polynomial chaos expansion (PCE). To allow high PCE orders, we use an efficient sparse PCE algorithm which selects the best sparse PCE from a given data set using the Kashyap information criterion (KIC). Parameter identifiability is performed using two approaches: the Bayesian approach based on the Markov chain Monte Carlo (MCMC) method and the first-order approximation (FOA) approach based on the Levenberg–Marquardt algorithm. The comparison between both approaches allows us to check whether FOA can provide a reliable estimation of parameters and associated uncertainties for the highly nonlinear hydrogeophysical problem investigated. GSA results show that in short time periods, the saturated hydraulic conductivity (Ks) and the voltage coupling coefficient at saturation (Csat) are the most influential parameters, whereas in long time periods, the residual water content (θs), the Mualem–van Genuchten parameter (n) and the Archie saturation exponent (na) become influential, with strong interactions between them. The Mualem–van Genuchten parameter (α) has a very weak influence on the SP signals during the whole experiment. Results of parameter estimation show that although the studied problem is highly nonlinear, when several SP data collected at different altitudes inside the column are used to calibrate the model, all hydraulic (Ks,θs,α,n) and geophysical parameters (na,Csat) can be reasonably estimated from the SP measurements. Further, in this case, the FOA approach provides accurate estimations of both mean parameter values and uncertainty regions. Conversely, when the number of SP measurements used for the calibration is strongly reduced, the FOA approach yields accurate mean parameter values (in agreement with MCMC results) but inaccurate and even unphysical confidence intervals for parameters with large uncertainty regions." @default.
- W2785173893 created "2018-02-02" @default.
- W2785173893 creator A5043014645 @default.
- W2785173893 creator A5055263516 @default.
- W2785173893 creator A5058452566 @default.
- W2785173893 creator A5087040615 @default.
- W2785173893 date "2018-07-02" @default.
- W2785173893 modified "2023-10-18" @default.
- W2785173893 title "Sensitivity and identifiability of hydraulic and geophysical parameters from streaming potential signals in unsaturated porous media" @default.
- W2785173893 cites W1518809979 @default.
- W2785173893 cites W1565568238 @default.
- W2785173893 cites W161947491 @default.
- W2785173893 cites W1909649765 @default.
- W2785173893 cites W1948203361 @default.
- W2785173893 cites W1966747192 @default.
- W2785173893 cites W1971283143 @default.
- W2785173893 cites W1973789490 @default.
- W2785173893 cites W1978420575 @default.
- W2785173893 cites W1990236303 @default.
- W2785173893 cites W1996928782 @default.
- W2785173893 cites W1999310382 @default.
- W2785173893 cites W2002387161 @default.
- W2785173893 cites W2004313281 @default.
- W2785173893 cites W2004426713 @default.
- W2785173893 cites W2016322182 @default.
- W2785173893 cites W2021090449 @default.
- W2785173893 cites W2023130238 @default.
- W2785173893 cites W2024086464 @default.
- W2785173893 cites W2032581045 @default.
- W2785173893 cites W2033109882 @default.
- W2785173893 cites W2044059702 @default.
- W2785173893 cites W2048568378 @default.
- W2785173893 cites W2049538141 @default.
- W2785173893 cites W2049774453 @default.
- W2785173893 cites W2056760934 @default.
- W2785173893 cites W2058991769 @default.
- W2785173893 cites W2066944697 @default.
- W2785173893 cites W2070441848 @default.
- W2785173893 cites W2071544114 @default.
- W2785173893 cites W2072442004 @default.
- W2785173893 cites W2083388884 @default.
- W2785173893 cites W2085173122 @default.
- W2785173893 cites W2087326422 @default.
- W2785173893 cites W2087452412 @default.
- W2785173893 cites W2092047866 @default.
- W2785173893 cites W2095243184 @default.
- W2785173893 cites W2097927798 @default.
- W2785173893 cites W2098522365 @default.
- W2785173893 cites W2101249139 @default.
- W2785173893 cites W2101589741 @default.
- W2785173893 cites W2108989885 @default.
- W2785173893 cites W2114303722 @default.
- W2785173893 cites W2117681582 @default.
- W2785173893 cites W2119179880 @default.
- W2785173893 cites W2120138297 @default.
- W2785173893 cites W2132071585 @default.
- W2785173893 cites W2133846178 @default.
- W2785173893 cites W2142568061 @default.
- W2785173893 cites W2144661611 @default.
- W2785173893 cites W2146495904 @default.
- W2785173893 cites W2151868609 @default.
- W2785173893 cites W2153988951 @default.
- W2785173893 cites W2162604832 @default.
- W2785173893 cites W2171331559 @default.
- W2785173893 cites W2172277853 @default.
- W2785173893 cites W2173126837 @default.
- W2785173893 cites W2321957512 @default.
- W2785173893 cites W2346739990 @default.
- W2785173893 cites W2434504847 @default.
- W2785173893 cites W2546469208 @default.
- W2785173893 cites W2587346616 @default.
- W2785173893 cites W2615403125 @default.
- W2785173893 cites W2738892701 @default.
- W2785173893 cites W4230732587 @default.
- W2785173893 cites W4241793634 @default.
- W2785173893 cites W4246464108 @default.
- W2785173893 doi "https://doi.org/10.5194/hess-22-3561-2018" @default.
- W2785173893 hasPublicationYear "2018" @default.
- W2785173893 type Work @default.
- W2785173893 sameAs 2785173893 @default.
- W2785173893 citedByCount "8" @default.
- W2785173893 countsByYear W27851738932019 @default.
- W2785173893 countsByYear W27851738932020 @default.
- W2785173893 countsByYear W27851738932021 @default.
- W2785173893 crossrefType "journal-article" @default.
- W2785173893 hasAuthorship W2785173893A5043014645 @default.
- W2785173893 hasAuthorship W2785173893A5055263516 @default.
- W2785173893 hasAuthorship W2785173893A5058452566 @default.
- W2785173893 hasAuthorship W2785173893A5087040615 @default.
- W2785173893 hasBestOaLocation W27851738931 @default.
- W2785173893 hasConcept C103272765 @default.
- W2785173893 hasConcept C105569014 @default.
- W2785173893 hasConcept C105795698 @default.
- W2785173893 hasConcept C111350023 @default.
- W2785173893 hasConcept C11413529 @default.
- W2785173893 hasConcept C114614502 @default.
- W2785173893 hasConcept C121332964 @default.
- W2785173893 hasConcept C122770356 @default.