Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785242895> ?p ?o ?g. }
- W2785242895 endingPage "553" @default.
- W2785242895 startingPage "545" @default.
- W2785242895 abstract "Background The development of a vaccine for norovirus requires a detailed understanding of global genetic diversity of noroviruses. We analysed their epidemiology and diversity using surveillance data from the NoroNet network. Methods We included genetic sequences of norovirus specimens obtained from outbreak investigations and sporadic gastroenteritis cases between 2005 and 2016 in Europe, Asia, Oceania, and Africa. We genotyped norovirus sequences and analysed sequences that overlapped at open reading frame (ORF) 1 and ORF2. Additionally, we assessed the sampling date and country of origin of the first reported sequence to assess when and where novel drift variants originated. Findings We analysed 16 635 norovirus sequences submitted between Jan 1, 2005, to Nov 17, 2016, of which 1372 (8·2%) sequences belonged to genotype GI, 15 256 (91·7%) to GII, and seven (<0·1%) to GIV.1. During this period, 26 different norovirus capsid genotypes circulated and 22 different recombinant genomes were found. GII.4 drift variants emerged with 2–3-year periodicity up to 2012, but not afterwards. Instead, the GII.4 Sydney capsid seems to persist through recombination, with a novel recombinant of GII.P16–GII.4 Sydney 2012 variant detected in 2014 in Germany (n=1) and the Netherlands (n=1), and again in 2016 in Japan (n=2), China (n=8), and the Netherlands (n=3). The novel GII.P17–GII.17, first reported in Asia in 2014, has circulated widely in Europe in 2015–16 (GII.P17 made up a highly variable proportion of all sequences in each country [median 11·3%, range 4·2–53·9], as did GII.17 [median 6·3%, range 0–44·5]). GII.4 viruses were more common in outbreaks in health-care settings (2239 [37·2%] of 6022 entries) compared with other genotypes (101 [12·5%] of 809 entries for GI and 263 [13·5%] of 1941 entries for GII non-GII.Pe–GII.4 or GII.P4–GII.4). Interpretation Continuous changes in the global norovirus genetic diversity highlight the need for sustained global norovirus surveillance, including assessment of possible immune escape and evolution by recombination, to provide a full overview of norovirus epidemiology for future vaccine policy decisions. Funding European Union's Horizon 2020 grant COMPARE, ZonMw TOP grant, the Virgo Consortium funded by the Dutch Government, and the Hungarian Scientific Research Fund. The development of a vaccine for norovirus requires a detailed understanding of global genetic diversity of noroviruses. We analysed their epidemiology and diversity using surveillance data from the NoroNet network. We included genetic sequences of norovirus specimens obtained from outbreak investigations and sporadic gastroenteritis cases between 2005 and 2016 in Europe, Asia, Oceania, and Africa. We genotyped norovirus sequences and analysed sequences that overlapped at open reading frame (ORF) 1 and ORF2. Additionally, we assessed the sampling date and country of origin of the first reported sequence to assess when and where novel drift variants originated. We analysed 16 635 norovirus sequences submitted between Jan 1, 2005, to Nov 17, 2016, of which 1372 (8·2%) sequences belonged to genotype GI, 15 256 (91·7%) to GII, and seven (<0·1%) to GIV.1. During this period, 26 different norovirus capsid genotypes circulated and 22 different recombinant genomes were found. GII.4 drift variants emerged with 2–3-year periodicity up to 2012, but not afterwards. Instead, the GII.4 Sydney capsid seems to persist through recombination, with a novel recombinant of GII.P16–GII.4 Sydney 2012 variant detected in 2014 in Germany (n=1) and the Netherlands (n=1), and again in 2016 in Japan (n=2), China (n=8), and the Netherlands (n=3). The novel GII.P17–GII.17, first reported in Asia in 2014, has circulated widely in Europe in 2015–16 (GII.P17 made up a highly variable proportion of all sequences in each country [median 11·3%, range 4·2–53·9], as did GII.17 [median 6·3%, range 0–44·5]). GII.4 viruses were more common in outbreaks in health-care settings (2239 [37·2%] of 6022 entries) compared with other genotypes (101 [12·5%] of 809 entries for GI and 263 [13·5%] of 1941 entries for GII non-GII.Pe–GII.4 or GII.P4–GII.4). Continuous changes in the global norovirus genetic diversity highlight the need for sustained global norovirus surveillance, including assessment of possible immune escape and evolution by recombination, to provide a full overview of norovirus epidemiology for future vaccine policy decisions." @default.
- W2785242895 created "2018-02-02" @default.
- W2785242895 creator A5000883454 @default.
- W2785242895 creator A5004329234 @default.
- W2785242895 creator A5004434511 @default.
- W2785242895 creator A5008346302 @default.
- W2785242895 creator A5008677339 @default.
- W2785242895 creator A5012528871 @default.
- W2785242895 creator A5012670583 @default.
- W2785242895 creator A5012816836 @default.
- W2785242895 creator A5014976725 @default.
- W2785242895 creator A5019732358 @default.
- W2785242895 creator A5022986880 @default.
- W2785242895 creator A5029927612 @default.
- W2785242895 creator A5036353037 @default.
- W2785242895 creator A5037076382 @default.
- W2785242895 creator A5040671876 @default.
- W2785242895 creator A5043594961 @default.
- W2785242895 creator A5044016659 @default.
- W2785242895 creator A5044066051 @default.
- W2785242895 creator A5045830780 @default.
- W2785242895 creator A5056607410 @default.
- W2785242895 creator A5057012596 @default.
- W2785242895 creator A5057473462 @default.
- W2785242895 creator A5057544272 @default.
- W2785242895 creator A5059586288 @default.
- W2785242895 creator A5060030666 @default.
- W2785242895 creator A5072368631 @default.
- W2785242895 creator A5074521300 @default.
- W2785242895 creator A5074804690 @default.
- W2785242895 creator A5075787110 @default.
- W2785242895 creator A5086777937 @default.
- W2785242895 creator A5088290102 @default.
- W2785242895 creator A5089088866 @default.
- W2785242895 date "2018-05-01" @default.
- W2785242895 modified "2023-10-18" @default.
- W2785242895 title "Molecular surveillance of norovirus, 2005–16: an epidemiological analysis of data collected from the NoroNet network" @default.
- W2785242895 cites W1574107806 @default.
- W2785242895 cites W194351578 @default.
- W2785242895 cites W1957537179 @default.
- W2785242895 cites W1971304145 @default.
- W2785242895 cites W1985684734 @default.
- W2785242895 cites W1988912949 @default.
- W2785242895 cites W1989782334 @default.
- W2785242895 cites W1994053564 @default.
- W2785242895 cites W2004446713 @default.
- W2785242895 cites W2034937537 @default.
- W2785242895 cites W2035909460 @default.
- W2785242895 cites W2054466627 @default.
- W2785242895 cites W2066128679 @default.
- W2785242895 cites W2068008645 @default.
- W2785242895 cites W2093527644 @default.
- W2785242895 cites W2100695515 @default.
- W2785242895 cites W2103504038 @default.
- W2785242895 cites W2103546861 @default.
- W2785242895 cites W2106822297 @default.
- W2785242895 cites W2115151801 @default.
- W2785242895 cites W2115655922 @default.
- W2785242895 cites W2118004842 @default.
- W2785242895 cites W2121774424 @default.
- W2785242895 cites W2123274910 @default.
- W2785242895 cites W2128541387 @default.
- W2785242895 cites W2135821507 @default.
- W2785242895 cites W2145960425 @default.
- W2785242895 cites W2189590820 @default.
- W2785242895 cites W2343817001 @default.
- W2785242895 cites W2396052848 @default.
- W2785242895 cites W2479357567 @default.
- W2785242895 cites W2535127719 @default.
- W2785242895 cites W2563669729 @default.
- W2785242895 cites W2572084850 @default.
- W2785242895 cites W2726213598 @default.
- W2785242895 cites W2760731030 @default.
- W2785242895 doi "https://doi.org/10.1016/s1473-3099(18)30059-8" @default.
- W2785242895 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29396001" @default.
- W2785242895 hasPublicationYear "2018" @default.
- W2785242895 type Work @default.
- W2785242895 sameAs 2785242895 @default.
- W2785242895 citedByCount "178" @default.
- W2785242895 countsByYear W27852428952018 @default.
- W2785242895 countsByYear W27852428952019 @default.
- W2785242895 countsByYear W27852428952020 @default.
- W2785242895 countsByYear W27852428952021 @default.
- W2785242895 countsByYear W27852428952022 @default.
- W2785242895 countsByYear W27852428952023 @default.
- W2785242895 crossrefType "journal-article" @default.
- W2785242895 hasAuthorship W2785242895A5000883454 @default.
- W2785242895 hasAuthorship W2785242895A5004329234 @default.
- W2785242895 hasAuthorship W2785242895A5004434511 @default.
- W2785242895 hasAuthorship W2785242895A5008346302 @default.
- W2785242895 hasAuthorship W2785242895A5008677339 @default.
- W2785242895 hasAuthorship W2785242895A5012528871 @default.
- W2785242895 hasAuthorship W2785242895A5012670583 @default.
- W2785242895 hasAuthorship W2785242895A5012816836 @default.
- W2785242895 hasAuthorship W2785242895A5014976725 @default.
- W2785242895 hasAuthorship W2785242895A5019732358 @default.
- W2785242895 hasAuthorship W2785242895A5022986880 @default.
- W2785242895 hasAuthorship W2785242895A5029927612 @default.