Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785273844> ?p ?o ?g. }
- W2785273844 endingPage "4615" @default.
- W2785273844 startingPage "4606" @default.
- W2785273844 abstract "Methanobactins (Mbns) are ribosomally produced, post-translationally modified natural products that bind copper with high affinity and specificity. Originally identified in methanotrophic bacteria, which have a high need for copper, operons encoding these compounds have also been found in many non-methanotrophic bacteria. The proteins responsible for Mbn biosynthesis include several novel enzymes. Mbn transport involves export through a multidrug efflux pump and re-internalization via a TonB-dependent transporter. Release of copper from Mbn and the molecular basis for copper regulation of Mbn production remain to be elucidated. Future work is likely to result in the identification of new enzymatic chemistry, opportunities for bioengineering and drug targeting of copper metabolism, and an expanded understanding of microbial metal homeostasis. Methanobactins (Mbns) are ribosomally produced, post-translationally modified natural products that bind copper with high affinity and specificity. Originally identified in methanotrophic bacteria, which have a high need for copper, operons encoding these compounds have also been found in many non-methanotrophic bacteria. The proteins responsible for Mbn biosynthesis include several novel enzymes. Mbn transport involves export through a multidrug efflux pump and re-internalization via a TonB-dependent transporter. Release of copper from Mbn and the molecular basis for copper regulation of Mbn production remain to be elucidated. Future work is likely to result in the identification of new enzymatic chemistry, opportunities for bioengineering and drug targeting of copper metabolism, and an expanded understanding of microbial metal homeostasis. Transition metals are key cofactors in metabolically important enzymes across all kingdoms of life (1Thomson A.J. Gray H.B. Bio-inorganic chemistry.Curr. Opin. Chem. Biol. 1998; 2 (9667942): 155-15810.1016/S1367-5931(98)80056-2Crossref PubMed Scopus (118) Google Scholar). Nevertheless, careful control of cellular metal levels is required; a cellular surplus can limit viability due to oxidative stress (2Valko M. Morris H. Cronin M.T. Metals, toxicity and oxidative stress.Curr. Med. Chem. 2005; 12 (15892631): 1161-120810.2174/0929867053764635Crossref PubMed Scopus (3633) Google Scholar), but metal starvation can also be fatal. Investigations of metal influx during conditions of metal scarcity have often been limited to iron, which is poorly bioavailable under aerobic conditions (3Raymond K.N. Carrano C.J. Coordination chemistry and microbial iron transport.Acc. Chem. Res. 1979; 12: 183-19010.1021/ar50137a004Crossref Scopus (310) Google Scholar). Iron-chelating natural products (siderophores) are secreted by many species, and iron from siderophores is incorporated into the cellular iron pool after re-internalization (4Miethke M. Marahiel M.A. Siderophore-based iron acquisition and pathogen control.Microbiol. Mol. Biol. Rev. 2007; 71 (17804665): 413-45110.1128/MMBR.00012-07Crossref PubMed Scopus (1087) Google Scholar). Although efflux has historically dominated studies of non-iron homeostasis, there is increasing evidence that similar systems exist for uptake of other metal ions (5Johnstone T.C. Nolan E.M. Beyond iron: non-classical biological functions of bacterial siderophores.Dalton Trans. 2015; 44 (25764171): 6320-633910.1039/C4DT03559CCrossref PubMed Google Scholar, 6Springer S.D. Butler A. Microbial ligand coordination: Consideration of biological significance.Coord. Chem. Rev. 2016; 306: 628-63510.1016/j.ccr.2015.03.013Crossref Scopus (31) Google Scholar). One of the best-understood examples is methanobactin (Mbn), 2The abbreviations used are: MbnmethanobactinCuMbncopper-loaded MbnsMMOsoluble methane monooxygenasepMMOparticulate methane monooxygenaseRiPPribosomally produced, post-translationally modified natural productRRERiPP recognition elementTBDTTonB-dependent transporterPBPperiplasmic binding proteinMATEmultidrug and toxic compound extrusionqRT-PCRquantitative RT-PCR. a natural product involved in copper homeostasis in methanotrophic bacteria. methanobactin copper-loaded Mbn soluble methane monooxygenase particulate methane monooxygenase ribosomally produced, post-translationally modified natural product RiPP recognition element TonB-dependent transporter periplasmic binding protein multidrug and toxic compound extrusion quantitative RT-PCR. Methanotrophic bacteria oxidize methane to methanol in the first step of their metabolism (7Hanson R.S. Hanson T.E. Methanotrophic bacteria.Microbiol. Rev. 1996; 60 (8801441): 439-471Crossref PubMed Google Scholar). Two unrelated metalloenzymes catalyze aerobic methane oxidation (8Sazinsky M.H. Lippard S.J. Methane monooxygenase: functionalizing methane at iron and copper.Met. Ions Life Sci. 2015; 15 (25707469): 205-256PubMed Google Scholar): the cytoplasmic iron enzyme soluble methane monooxygenase (sMMO) and the more widespread copper enzyme particulate methane monooxygenase (pMMO), a integral inner membrane protein. Some methanotrophic bacteria can produce both enzymes, but whenever sufficient copper is present, sMMO is down-regulated and pMMO is preferred (9Semrau J.D. DiSpirito A.A. Yoon S. Methanotrophs and copper.FEMS Microbiol. Rev. 2010; 34 (20236329): 496-53110.1111/j.1574-6976.2010.00212.xCrossref PubMed Scopus (526) Google Scholar). In the presence of copper, methanotrophs produce extensive intracytoplasmic membranes (10Scott D.C. Brannan J. Higgins I.J. The effect of growth conditions on intracytoplasmic membranes and methane mono-oxygenase activities in Methylosinus trichosporium OB3b.J. Gen. Microbiol. 1981; 125: 63-7210.1099/00221287-125-1-63Google Scholar, 11Prior S.D. Dalton H. The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath).Microbiology. 1985; 131: 155-16310.1099/00221287-131-1-155Crossref Google Scholar). These membranes contain large quantities of pMMO, representing up to a fifth of the cellular protein mass (12Martinho M. Choi D.W. Dispirito A.A. Antholine W.E. Semrau J.D. Münck E. Mössbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus Bath: evidence for a diiron center.J. Am. Chem. Soc. 2007; 129 (18052283): 15783-1578510.1021/ja077682bCrossref PubMed Scopus (80) Google Scholar). pMMO activity is copper-dependent (13Balasubramanian R. Smith S.M. Rawat S. Yatsunyk L.A. Stemmler T.L. Rosenzweig A.C. Oxidation of methane by a biological dicopper centre.Nature. 2010; 465 (20410881): 115-11910.1038/nature08992Crossref PubMed Scopus (402) Google Scholar), and methanotrophs thus have several systems for copper influx alongside the better-understood efflux systems of other microbes (14Festa R.A. Thiele D.J. Copper: An essential metal in biology.Curr. Biol. 2011; 21 (22075424): R877-R88310.1016/j.cub.2011.09.040Abstract Full Text Full Text PDF PubMed Scopus (607) Google Scholar). Some methanotrophs secrete the post-translationally modified protein MopE to bind extracellular copper (15Karlsen O.A. Berven F.S. Stafford G.P. Larsen Ø. Murrell J.C. Jensen H.B. Fjellbirkeland A. The surface-associated and secreted MopE protein of Methylococcus capsulatus (Bath) responds to changes in the concentration of copper in the growth medium.Appl. Environ. Microbiol. 2003; 69 (12676726): 2386-238810.1128/AEM.69.4.2386-2388.2003Crossref PubMed Scopus (30) Google Scholar), whereas other methanotrophs use the copper-binding “chalkophore” (from the Greek chalko-, copper) Mbn to mediate copper uptake into the intracellular copper pool (16Kraemer S.M. Duckworth O.W. Harrington J.M. Schenkeveld W.D. Metallophores and trace metal biogeochemistry.Aquat. Geochem. 2014; 21: 159-19510.1007/s10498-015-9263-1Crossref Scopus (60) Google Scholar, 17Kim H.J. Graham D.W. DiSpirito A.A. Alterman M.A. Galeva N. Larive C.K. Asunskis D. Sherwood P.M. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria.Science. 2004; 305 (15361623): 1612-161510.1126/science.1098322Crossref PubMed Scopus (255) Google Scholar). Mbns are ribosomally produced, post-translationally modified natural products (RiPPs) (18Arnison P.G. Bibb M.J. Bierbaum G. Bowers A.A. Bugni T.S. Bulaj G. Camarero J.A. Campopiano D.J. Challis G.L. Clardy J. Cotter P.D. Craik D.J. Dawson M. Dittmann E. Donadio S. et al.Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature.Nat. Prod. Rep. 2013; 30 (23165928): 108-16010.1039/C2NP20085FCrossref PubMed Scopus (1306) Google Scholar). Operons encoding Mbn precursor peptides along with proteins involved in Mbn biosynthesis, transport, and regulation have been identified in a range of bacteria, including non-methanotrophs, in which Mbn is increasingly believed to play a similar role in copper homeostasis (19Kenney G.E. Rosenzweig A.C. Genome mining for methanobactins.BMC Biol. 2013; 11 (23442874): 1710.1186/1741-7007-11-17Crossref PubMed Scopus (51) Google Scholar, 20Dassama L.M. Kenney G.E. Rosenzweig A.C. Methanobactins: from genome to function.Metallomics. 2017; 9 (27905614): 7-2010.1039/c6mt00208kCrossref PubMed Google Scholar). Here, we summarize the current state of knowledge regarding Mbns. The crystal structure of copper-loaded Mbn (CuMbn) from Methylosinus (Ms.) trichosporium OB3b was assigned as N-2-isopropylester–(4-thionyl-5-hydroxy-imidazole)–Gly1–Ser2–Cys3–Tyr4–pyrrolidine–(4-hydroxy-5-thionyl-imidazole)–Ser5–Cys6–Met7, with a disulfide bridge between the two cysteine residues (17Kim H.J. Graham D.W. DiSpirito A.A. Alterman M.A. Galeva N. Larive C.K. Asunskis D. Sherwood P.M. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria.Science. 2004; 305 (15361623): 1612-161510.1126/science.1098322Crossref PubMed Scopus (255) Google Scholar). In this structure, two hydroxyimidazolate rings and neighboring thioamide groups coordinate a copper ion in a distorted tetrahedral geometry. Re-analysis by NMR provided two key corrections: the heterocycles are instead oxazolone rings, and the “N-terminal” group is actually a 3-methylbutanoyl group (Fig. 1A) (21Behling L.A. Hartsel S.C. Lewis D.E. DiSpirito A.A. Choi D.W. Masterson L.R. Veglia G. Gallagher W.H. NMR, mass spectrometry and chemical evidence reveal a different chemical structure for methanobactin that contains oxazolone rings.J. Am. Chem. Soc. 2008; 130 (18729522): 12604-1260510.1021/ja804747dCrossref PubMed Scopus (91) Google Scholar). These oxazolone rings (and in some circumstances other nitrogen-containing heterocycles) and neighboring enethiol/thioamide groups are the core Mbn post-translational modifications. Oxazolone rings contain an acid-labile lactone moiety, and Mbn is thus susceptible to acid-catalyzed methanolysis (21Behling L.A. Hartsel S.C. Lewis D.E. DiSpirito A.A. Choi D.W. Masterson L.R. Veglia G. Gallagher W.H. NMR, mass spectrometry and chemical evidence reveal a different chemical structure for methanobactin that contains oxazolone rings.J. Am. Chem. Soc. 2008; 130 (18729522): 12604-1260510.1021/ja804747dCrossref PubMed Scopus (91) Google Scholar) and hydrolysis (22Krentz B.D. Mulheron H.J. Semrau J.D. Dispirito A.A. Bandow N.L. Haft D.H. Vuilleumier S. Murrell J.C. McEllistrem M.T. Hartsel S.C. Gallagher W.H. A comparison of methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2 predicts methanobactins are synthesized from diverse peptide precursors modified to create a common core for binding and reducing copper ions.Biochemistry. 2010; 49 (20961038): 10117-1013010.1021/bi1014375Crossref PubMed Scopus (78) Google Scholar). The C-terminal methionine is sometimes absent (23El Ghazouani A. Baslé A. Firbank S.J. Knapp C.W. Gray J. Graham D.W. Dennison C. Copper-binding properties and structures of methanobactins from Methylosinus trichosporium OB3b.Inorg. Chem. 2011; 50 (21254756): 1378-139110.1021/ic101965jCrossref PubMed Scopus (64) Google Scholar), although it is unclear when and how this residue loss occurs. The structure of a second Methylosinus Mbn, Ms. sp. LW4 Mbn, was predicted based on its Mbn operon content; despite an otherwise divergent peptidic backbone, this Mbn has two oxazolone/thioamide pairs, an internal disulfide bond, and an N-terminal ketone group, as observed in Ms. trichosporium OB3b Mbn (Fig. 1B) (24Kenney G.E. Goering A.W. Ross M.O. DeHart C.J. Thomas P.M. Hoffman B.M. Kelleher N.L. Rosenzweig A.C. Characterization of methanobactin from Methylosinus sp. LW4.J. Am. Chem. Soc. 2016; 138 (27527063): 11124-1112710.1021/jacs.6b06821Crossref PubMed Scopus (22) Google Scholar). CuMbn from Methylocystis (Mc.) sp. SB2, characterized by NMR, was reported to have a divergent peptidic backbone, no cysteine-derived disulfide bond, and a sulfonated threonine as well as two heterocycle/thioamide moieties (Fig. 1C) (22Krentz B.D. Mulheron H.J. Semrau J.D. Dispirito A.A. Bandow N.L. Haft D.H. Vuilleumier S. Murrell J.C. McEllistrem M.T. Hartsel S.C. Gallagher W.H. A comparison of methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2 predicts methanobactins are synthesized from diverse peptide precursors modified to create a common core for binding and reducing copper ions.Biochemistry. 2010; 49 (20961038): 10117-1013010.1021/bi1014375Crossref PubMed Scopus (78) Google Scholar). Several C-terminal residues are lost in the characterized compound (20Dassama L.M. Kenney G.E. Rosenzweig A.C. Methanobactins: from genome to function.Metallomics. 2017; 9 (27905614): 7-2010.1039/c6mt00208kCrossref PubMed Google Scholar). The first “N-terminal” heterocycle (heterocycle A) was deemed an imidazolone ring based on an NMR-detectable secondary amine embedded in that heterocycle (22Krentz B.D. Mulheron H.J. Semrau J.D. Dispirito A.A. Bandow N.L. Haft D.H. Vuilleumier S. Murrell J.C. McEllistrem M.T. Hartsel S.C. Gallagher W.H. A comparison of methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2 predicts methanobactins are synthesized from diverse peptide precursors modified to create a common core for binding and reducing copper ions.Biochemistry. 2010; 49 (20961038): 10117-1013010.1021/bi1014375Crossref PubMed Scopus (78) Google Scholar). The second heterocycle (heterocycle B) is an oxazolone, as in Ms trichosporium OB3b Mbn. Two additional Mbns from the Methylocystis species have been characterized via X-ray crystallography and a third closely related Mbn via mass spectrometry (Fig. 1, D–F). Although these Mbns differ from Mc. sp. SB2 Mbn by only one or two residues, heterocycle A is clearly a six-membered ring, depicted as a pyrazinediol group (25El Ghazouani A. Baslé A. Gray J. Graham D.W. Firbank S.J. Dennison C. Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22582172): 8400-840410.1073/pnas.1112921109Crossref PubMed Scopus (66) Google Scholar). Given that the Methylocystis species are closely related, the structural discrepancy in heterocycle A is puzzling (20Dassama L.M. Kenney G.E. Rosenzweig A.C. Methanobactins: from genome to function.Metallomics. 2017; 9 (27905614): 7-2010.1039/c6mt00208kCrossref PubMed Google Scholar). One explanation is that Methylocystis Mbns may actually contain a hydroxypyrazinone or pyrazinedione tautomer (Fig. 1G), which would contain a heterocyclic secondary amine, as observed by NMR, and the six-membered rings observed via X-ray crystallography. Supporting this notion, the non-copper-chelating nitrogen in heterocycle A in the Methylocystis Mbn crystal structures appears to be protonated (24Kenney G.E. Goering A.W. Ross M.O. DeHart C.J. Thomas P.M. Hoffman B.M. Kelleher N.L. Rosenzweig A.C. Characterization of methanobactin from Methylosinus sp. LW4.J. Am. Chem. Soc. 2016; 138 (27527063): 11124-1112710.1021/jacs.6b06821Crossref PubMed Scopus (22) Google Scholar). Thioamide/enethiol tautomerization may also occur, depending on ionic state, copper chelation, and the identity of the neighboring heterocycle. The paired heterocycles and thioamides found in all these Mbns have characteristic spectral features. Oxazolone B absorbs at 340–342 nm, whereas heterocycle A absorbs at 388–394 nm (22Krentz B.D. Mulheron H.J. Semrau J.D. Dispirito A.A. Bandow N.L. Haft D.H. Vuilleumier S. Murrell J.C. McEllistrem M.T. Hartsel S.C. Gallagher W.H. A comparison of methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2 predicts methanobactins are synthesized from diverse peptide precursors modified to create a common core for binding and reducing copper ions.Biochemistry. 2010; 49 (20961038): 10117-1013010.1021/bi1014375Crossref PubMed Scopus (78) Google Scholar, 24Kenney G.E. Goering A.W. Ross M.O. DeHart C.J. Thomas P.M. Hoffman B.M. Kelleher N.L. Rosenzweig A.C. Characterization of methanobactin from Methylosinus sp. LW4.J. Am. Chem. Soc. 2016; 138 (27527063): 11124-1112710.1021/jacs.6b06821Crossref PubMed Scopus (22) Google Scholar, 25El Ghazouani A. Baslé A. Gray J. Graham D.W. Firbank S.J. Dennison C. Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22582172): 8400-840410.1073/pnas.1112921109Crossref PubMed Scopus (66) Google Scholar26Kim H.J. Galeva N. Larive C.K. Alterman M. Graham D.W. Purification and physical-chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b.Biochemistry. 2005; 44 (15794651): 5140-514810.1021/bi047367rCrossref PubMed Scopus (68) Google Scholar). Fluorescence is observed at 375–475 nm with excitation at the heterocycle-associated absorbance maxima (26Kim H.J. Galeva N. Larive C.K. Alterman M. Graham D.W. Purification and physical-chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b.Biochemistry. 2005; 44 (15794651): 5140-514810.1021/bi047367rCrossref PubMed Scopus (68) Google Scholar, 27Choi D.W. Zea C.J. Do Y.S. Semrau J.D. Antholine W.E. Hargrove M.S. Pohl N.L. Boyd E.S. Geesey G.G. Hartsel S.C. Shafe P.H. McEllistrem M.T. Kisting C.J. Campbell D. Rao V. et al.Spectral, kinetic, and thermodynamic properties of Cu(I) and Cu(II) binding by methanobactin from Methylosinus trichosporium OB3b.Biochemistry. 2006; 45 (16445286): 1442-145310.1021/bi051815tCrossref PubMed Scopus (104) Google Scholar). Absorbance features from tyrosines or tryptophans are also observed for the two Methylosinus compounds, and a feature at 254 nm may be related to the thioamide/enethiol groups. Major spectral shifts occur upon copper binding (22Krentz B.D. Mulheron H.J. Semrau J.D. Dispirito A.A. Bandow N.L. Haft D.H. Vuilleumier S. Murrell J.C. McEllistrem M.T. Hartsel S.C. Gallagher W.H. A comparison of methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2 predicts methanobactins are synthesized from diverse peptide precursors modified to create a common core for binding and reducing copper ions.Biochemistry. 2010; 49 (20961038): 10117-1013010.1021/bi1014375Crossref PubMed Scopus (78) Google Scholar, 27Choi D.W. Zea C.J. Do Y.S. Semrau J.D. Antholine W.E. Hargrove M.S. Pohl N.L. Boyd E.S. Geesey G.G. Hartsel S.C. Shafe P.H. McEllistrem M.T. Kisting C.J. Campbell D. Rao V. et al.Spectral, kinetic, and thermodynamic properties of Cu(I) and Cu(II) binding by methanobactin from Methylosinus trichosporium OB3b.Biochemistry. 2006; 45 (16445286): 1442-145310.1021/bi051815tCrossref PubMed Scopus (104) Google Scholar), and oxazolone-derived fluorescence is mostly abolished (26Kim H.J. Galeva N. Larive C.K. Alterman M. Graham D.W. Purification and physical-chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b.Biochemistry. 2005; 44 (15794651): 5140-514810.1021/bi047367rCrossref PubMed Scopus (68) Google Scholar, 27Choi D.W. Zea C.J. Do Y.S. Semrau J.D. Antholine W.E. Hargrove M.S. Pohl N.L. Boyd E.S. Geesey G.G. Hartsel S.C. Shafe P.H. McEllistrem M.T. Kisting C.J. Campbell D. Rao V. et al.Spectral, kinetic, and thermodynamic properties of Cu(I) and Cu(II) binding by methanobactin from Methylosinus trichosporium OB3b.Biochemistry. 2006; 45 (16445286): 1442-145310.1021/bi051815tCrossref PubMed Scopus (104) Google Scholar28Bandow N. Gilles V.S. Freesmeier B. Semrau J.D. Krentz B. Gallagher W. McEllistrem M.T. Hartsel S.C. Choi D.W. Hargrove M.S. Heard T.M. Chesner L.N. Braunreiter K.M. Cao B.V. Gavitt M.M. et al.Spectral and copper binding properties of methanobactin from the facultative methanotroph Methylocystis strain SB2.J. Inorg. Biochem. 2012; 110 (22504273): 72-8210.1016/j.jinorgbio.2012.02.002Crossref PubMed Scopus (33) Google Scholar). Mbns have a high affinity for copper in both oxidation states. Values vary significantly by measurement technique (28Bandow N. Gilles V.S. Freesmeier B. Semrau J.D. Krentz B. Gallagher W. McEllistrem M.T. Hartsel S.C. Choi D.W. Hargrove M.S. Heard T.M. Chesner L.N. Braunreiter K.M. Cao B.V. Gavitt M.M. et al.Spectral and copper binding properties of methanobactin from the facultative methanotroph Methylocystis strain SB2.J. Inorg. Biochem. 2012; 110 (22504273): 72-8210.1016/j.jinorgbio.2012.02.002Crossref PubMed Scopus (33) Google Scholar), but the broad consensus is that characterized Mbns have Cu(I)-binding constants of at least 1020–1021 m−1 (23El Ghazouani A. Baslé A. Firbank S.J. Knapp C.W. Gray J. Graham D.W. Dennison C. Copper-binding properties and structures of methanobactins from Methylosinus trichosporium OB3b.Inorg. Chem. 2011; 50 (21254756): 1378-139110.1021/ic101965jCrossref PubMed Scopus (64) Google Scholar, 25El Ghazouani A. Baslé A. Gray J. Graham D.W. Firbank S.J. Dennison C. Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22582172): 8400-840410.1073/pnas.1112921109Crossref PubMed Scopus (66) Google Scholar, 28Bandow N. Gilles V.S. Freesmeier B. Semrau J.D. Krentz B. Gallagher W. McEllistrem M.T. Hartsel S.C. Choi D.W. Hargrove M.S. Heard T.M. Chesner L.N. Braunreiter K.M. Cao B.V. Gavitt M.M. et al.Spectral and copper binding properties of methanobactin from the facultative methanotroph Methylocystis strain SB2.J. Inorg. Biochem. 2012; 110 (22504273): 72-8210.1016/j.jinorgbio.2012.02.002Crossref PubMed Scopus (33) Google Scholar, 29Pesch M.-L. Christl I. Hoffmann M. Kraemer S.M. Kretzschmar R. Copper complexation of methanobactin isolated from Methylosinus trichosporium OB3b: pH-dependent speciation and modeling.J. Inorg. Biochem. 2012; 116 (23010330): 55-6210.1016/j.jinorgbio.2012.07.008Crossref PubMed Scopus (17) Google Scholar). Structural modifications beyond the first coordination sphere such as loss of C-terminal residues or desulfonation of the threonine in Methylocystis Mbns slightly affect copper affinity (23El Ghazouani A. Baslé A. Firbank S.J. Knapp C.W. Gray J. Graham D.W. Dennison C. Copper-binding properties and structures of methanobactins from Methylosinus trichosporium OB3b.Inorg. Chem. 2011; 50 (21254756): 1378-139110.1021/ic101965jCrossref PubMed Scopus (64) Google Scholar, 25El Ghazouani A. Baslé A. Gray J. Graham D.W. Firbank S.J. Dennison C. Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22582172): 8400-840410.1073/pnas.1112921109Crossref PubMed Scopus (66) Google Scholar). The Cu(I) affinity is high enough that Mbn can liberate bio-unavailable copper from sources ranging from humic acids (30Pesch M.-L. Hoffmann M. Christl I. Kraemer S.M. Kretzschmar R. Competitive ligand exchange between Cu-humic acid complexes and methanobactin.Geobiology. 2013; 11 (23082815): 44-5410.1111/gbi.12010Crossref PubMed Scopus (17) Google Scholar) to minerals (31Knapp C.W. Fowle D.A. Kulczycki E. Roberts J.A. Graham D.W. Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources.Proc. Natl. Acad. Sci. U.S.A. 2007; 104 (17615240): 12040-1204510.1073/pnas.0702879104Crossref PubMed Scopus (88) Google Scholar) to borosilicate glass (32Kulczycki E. Fowle D.A. Knapp C.W. Graham D.W. Roberts J.A. Methanobactin-promoted dissolution of Cu-substituted borosilicate glass.Geobiology. 2007; 5: 251-26310.1111/j.1472-4669.2007.00102.xCrossref Scopus (30) Google Scholar, 33Kulczycki E. Fowle D.A. Kenward P.A. Leslie K. Graham D.W. Roberts J.A. Stimulation of methanotroph activity by Cu-substituted borosilicate glass.Geomicrobiol. J. 2011; 28: 1-1010.1080/01490451003614971Crossref Scopus (12) Google Scholar). Although Mbns bind Cu(II) with lower affinity, generally calculated to be 1011–1014 m−1 (25El Ghazouani A. Baslé A. Gray J. Graham D.W. Firbank S.J. Dennison C. Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22582172): 8400-840410.1073/pnas.1112921109Crossref PubMed Scopus (66) Google Scholar), binding is reductive, with conversion to Cu(I) within the first 10 min via an unknown mechanism, as confirmed by electron paramagnetic resonance and X-ray absorption spectroscopies (27Choi D.W. Zea C.J. Do Y.S. Semrau J.D. Antholine W.E. Hargrove M.S. Pohl N.L. Boyd E.S. Geesey G.G. Hartsel S.C. Shafe P.H. McEllistrem M.T. Kisting C.J. Campbell D. Rao V. et al.Spectral, kinetic, and thermodynamic properties of Cu(I) and Cu(II) binding by methanobactin from Methylosinus trichosporium OB3b.Biochemistry. 2006; 45 (16445286): 1442-145310.1021/bi051815tCrossref PubMed Scopus (104) Google Scholar, 29Pesch M.-L. Christl I. Hoffmann M. Kraemer S.M. Kretzschmar R. Copper complexation of methanobactin isolated from Methylosinus trichosporium OB3b: pH-dependent speciation and modeling.J. Inorg. Biochem. 2012; 116 (23010330): 55-6210.1016/j.jinorgbio.2012.07.008Crossref PubMed Scopus (17) Google Scholar, 34Hakemian A.S. Tinberg C.E. Kondapalli K.C. Telser J. Hoffman B.M. Stemmler T.L. Rosenzweig A.C. The copper chelator methanobactin from Methylosinus trichosporium OB3b binds copper(I).J. Am. Chem. Soc. 2005; 127 (16332035): 17142-1714310.1021/ja0558140Crossref PubMed Scopus (48) Google Scholar, 35Choi D.W. Bandow N.L. McEllistrem M.T. Semrau J.D. Antholine W.E. Hartsel S.C. Gallagher W. Zea C.J. Pohl N.L. Zahn J.A. DiSpirito A.A. Spectral and thermodynamic properties of methanobactin from γ-proteobacterial methane oxidizing bacteria: a case for copper competition on a molecular level.J. Inorg. Biochem. 2010; 104 (20817303): 1240-124710.1016/j.jinorgbio.2010.08.002Crossref PubMed Scopus (42) Google Scholar). Under superstoichiometric copper conditions, a second copper binds, albeit with lower affinity and without reduction (29Pesch M.-L. Christl I. Hoffmann M. Kraemer S.M. Kretzschmar R. Copper complexation of methanobactin isolated from Methylosinus trichosporium OB3b: pH-dependent speciation and modeling.J. Inorg. Biochem. 2012; 116 (23010330): 55-6210.1016/j.jinorgbio.2012.07.008Crossref PubMed Scopus (17) Google Scholar). Other stoichiometries are also observed under some conditions (29Pesch M.-L. Christl I. Hoffmann M. Kraemer S.M. Kretzschmar R. Copper complexation of methanobactin isolated from Methylosinus trichosporium OB3b: pH-dependent speciation and modeling.J. Inorg. Biochem. 2012; 116 (23010330): 55-6210.1016/j.jinorgbio.2012.07.008Crossref PubMed Scopus (17) Google Scholar). Like other metallophores, Mbns can bind additional metal ions. Harder metals, including Cd(II), Co(II), Fe(III), Mn(II), Ni(II), and Zn(II), bind Mbn poorly and sometimes as bischelates or as dimetallated compounds, and no reductive binding is observed (36Choi D.W. Do Y.S. Zea C.J. McEllistrem M.T. Lee S.-W. Semrau J.D. Pohl N.L. Kisting C.J. Scardino L.L. Hartsel S.C. Boyd E.S. Geesey G.G. Riedel T.P. Shafe P.H. Kranski K.A. et al.Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b.J. Inorg. Biochem. 2006; 100 (17070918): 2150-216110.1016/j.jinorgbio.2006.08.017Crossref PubMed Scopus (95) Google Scholar). Softer metals such as Ag(I), Au(III), Hg(II), Pb(II), and U(VI) bind single Mbn molecules with a 1:1 stoichiometry. Recent ion-mobility mass spectrometry experiments complicate this classification of Mbn–metal interactions, although further spectroscopic analysis may be necessary to confirm these results (37McCabe J.W. Vangala R. Angel L.A. Binding selectivity of methanobactin from Methylosinus trichosporium OB3b for copper(I), silver(I), zinc(II), nickel(II), cobalt(II), manganese(II), lead(II), and iron(II).J. Am. Soc. Mass Spectrom. 2017; 28 (28856622): 2588-2601Crossref PubMed Scopus (20) Google Scholar). Nevertheless, binding of softer metals is consistently of higher affinity, results in spectral features resembling those of CuMbn, and can be reductive for at least Au(III), Ag(I), and Hg(II) (36Choi D.W. Do Y.S. Zea C.J. McEllistrem M.T. Lee S.-W. Semrau J.D. Pohl N.L. Kisting C.J. Scardino L.L. Hartsel S.C. Boyd E.S. Geesey G.G. Riedel T.P. Shafe P.H. Kranski K.A. et al.Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b.J. Inorg. Biochem. 2006; 100 (17070918): 2150-216110.1016/j.jinorgbio.2006.08.017Crossref PubMed Scopus (95) Google Scholar). Relative binding affinities show some pH dependence (36Choi D.W. Do Y.S. Zea C.J. McEllistrem M.T. Lee S.-W. Semrau J.D. Pohl N.L. Kisting C.J. Scardino L.L. Hartsel S.C. Boyd E.S. Geesey G.G. Riedel T.P. Shafe P.H. Kranski K.A. et al.Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from M" @default.
- W2785273844 created "2018-02-02" @default.
- W2785273844 creator A5000436369 @default.
- W2785273844 creator A5000721117 @default.
- W2785273844 date "2018-03-01" @default.
- W2785273844 modified "2023-10-14" @default.
- W2785273844 title "Methanobactins: Maintaining copper homeostasis in methanotrophs and beyond" @default.
- W2785273844 cites W1550122207 @default.
- W2785273844 cites W1587997563 @default.
- W2785273844 cites W1955057702 @default.
- W2785273844 cites W1964318884 @default.
- W2785273844 cites W1965997737 @default.
- W2785273844 cites W1966289358 @default.
- W2785273844 cites W1971175867 @default.
- W2785273844 cites W1974201067 @default.
- W2785273844 cites W1975649209 @default.
- W2785273844 cites W1976014072 @default.
- W2785273844 cites W1976069560 @default.
- W2785273844 cites W1976325156 @default.
- W2785273844 cites W1977121074 @default.
- W2785273844 cites W1977438996 @default.
- W2785273844 cites W1980185776 @default.
- W2785273844 cites W1984458803 @default.
- W2785273844 cites W1986586959 @default.
- W2785273844 cites W1988092306 @default.
- W2785273844 cites W1995500412 @default.
- W2785273844 cites W1995643029 @default.
- W2785273844 cites W1997345890 @default.
- W2785273844 cites W1997854913 @default.
- W2785273844 cites W1998763559 @default.
- W2785273844 cites W1998917613 @default.
- W2785273844 cites W2004171988 @default.
- W2785273844 cites W2007698854 @default.
- W2785273844 cites W2012031070 @default.
- W2785273844 cites W2014093336 @default.
- W2785273844 cites W2019198879 @default.
- W2785273844 cites W2026733620 @default.
- W2785273844 cites W2033294574 @default.
- W2785273844 cites W2038747238 @default.
- W2785273844 cites W2041219935 @default.
- W2785273844 cites W2044894353 @default.
- W2785273844 cites W2045333192 @default.
- W2785273844 cites W2047060675 @default.
- W2785273844 cites W2056530523 @default.
- W2785273844 cites W2058657340 @default.
- W2785273844 cites W2060202201 @default.
- W2785273844 cites W2061703386 @default.
- W2785273844 cites W2071475385 @default.
- W2785273844 cites W2072683799 @default.
- W2785273844 cites W2074023228 @default.
- W2785273844 cites W2074704191 @default.
- W2785273844 cites W2075787499 @default.
- W2785273844 cites W2080555115 @default.
- W2785273844 cites W2082361363 @default.
- W2785273844 cites W2085580529 @default.
- W2785273844 cites W2087721137 @default.
- W2785273844 cites W2090800288 @default.
- W2785273844 cites W2099998333 @default.
- W2785273844 cites W2101475536 @default.
- W2785273844 cites W2104508905 @default.
- W2785273844 cites W2108138085 @default.
- W2785273844 cites W2117144498 @default.
- W2785273844 cites W2123595241 @default.
- W2785273844 cites W2126383924 @default.
- W2785273844 cites W2127276750 @default.
- W2785273844 cites W2130630244 @default.
- W2785273844 cites W2131571255 @default.
- W2785273844 cites W2133153520 @default.
- W2785273844 cites W2136189294 @default.
- W2785273844 cites W2140405265 @default.
- W2785273844 cites W2140665078 @default.
- W2785273844 cites W2147548234 @default.
- W2785273844 cites W2149869218 @default.
- W2785273844 cites W2154507191 @default.
- W2785273844 cites W2155976498 @default.
- W2785273844 cites W2157081427 @default.
- W2785273844 cites W2162393890 @default.
- W2785273844 cites W2162854463 @default.
- W2785273844 cites W2168548284 @default.
- W2785273844 cites W2168747862 @default.
- W2785273844 cites W2171652074 @default.
- W2785273844 cites W2265414900 @default.
- W2785273844 cites W2296596995 @default.
- W2785273844 cites W2301975229 @default.
- W2785273844 cites W2303145251 @default.
- W2785273844 cites W2306937799 @default.
- W2785273844 cites W2326901702 @default.
- W2785273844 cites W2444055230 @default.
- W2785273844 cites W2512542862 @default.
- W2785273844 cites W2534549021 @default.
- W2785273844 cites W2547664102 @default.
- W2785273844 cites W2555599194 @default.
- W2785273844 cites W2620265219 @default.
- W2785273844 cites W2753687596 @default.
- W2785273844 cites W2763085503 @default.
- W2785273844 cites W2779511151 @default.
- W2785273844 cites W4250672055 @default.
- W2785273844 cites W4253646848 @default.