Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785321211> ?p ?o ?g. }
- W2785321211 endingPage "268" @default.
- W2785321211 startingPage "253" @default.
- W2785321211 abstract "Prediction the inside environment variables in greenhouses is very important because they play a vital role in greenhouse cultivation and energy lost especially in cold and hot regions. The greenhouse environment is an uncertain nonlinear system which classical modeling methods have some problems to solve it. So the main goal of this study is to select the best method between Artificial Neural Network (ANN) and Support Vector Machine (SVM) to estimate three different variables include inside air, soil and plant temperatures (Ta, Ts, Tp) and also energy exchange in a polyethylene greenhouse in Shahreza city, Isfahan province, Iran. The environmental factors which influencing all the inside temperatures such as outside air temperature, wind speed and outside solar radiation were collected as data samples. In this research, 13 different training algorithms were used for ANN models (MLP-RBF). Based on K-fold cross validation and Randomized Complete Block (RCB) methodology, the best model was selected. The results showed that the type of training algorithm and kernel function are very important factors in ANN (RBF and MLP) and SVM models performance, respectively. Comparing RBF, MLP and SVM models showed that the performance of RBF to predict Ta, Tp and Ts variables is better according to small values of RMSE and MAPE and large value of R2 indices. The range of RMSE and MAPE factors for RBF model to predict Ta, Tp and Ts were between 0.07 and 0.12 °C and 0.28–0.50%, respectively. Generalizability and stability of the RBF model with 5-fold cross validation analysis showed that this method can use with small size of data groups. The performance of best model (RBF) to estimate the energy lost and exchange in the greenhouse with heat transfer models showed that this method can estimate the real data in greenhouse and then predict the energy lost and exchange with high accuracy." @default.
- W2785321211 created "2018-02-23" @default.
- W2785321211 creator A5046998811 @default.
- W2785321211 creator A5050035832 @default.
- W2785321211 creator A5053236680 @default.
- W2785321211 creator A5062634871 @default.
- W2785321211 creator A5070672761 @default.
- W2785321211 date "2018-06-01" @default.
- W2785321211 modified "2023-09-23" @default.
- W2785321211 title "Applied machine learning in greenhouse simulation; new application and analysis" @default.
- W2785321211 cites W1596717185 @default.
- W2785321211 cites W1927188555 @default.
- W2785321211 cites W1966654645 @default.
- W2785321211 cites W1970871687 @default.
- W2785321211 cites W1975390134 @default.
- W2785321211 cites W1980075997 @default.
- W2785321211 cites W1983032216 @default.
- W2785321211 cites W1984366931 @default.
- W2785321211 cites W1993969629 @default.
- W2785321211 cites W1995203644 @default.
- W2785321211 cites W2000252144 @default.
- W2785321211 cites W2021078801 @default.
- W2785321211 cites W2041333578 @default.
- W2785321211 cites W2046090660 @default.
- W2785321211 cites W2047320794 @default.
- W2785321211 cites W2051453543 @default.
- W2785321211 cites W2067100007 @default.
- W2785321211 cites W2068689590 @default.
- W2785321211 cites W2075491568 @default.
- W2785321211 cites W2080534936 @default.
- W2785321211 cites W2091873118 @default.
- W2785321211 cites W2101155472 @default.
- W2785321211 cites W2114555006 @default.
- W2785321211 cites W2130490306 @default.
- W2785321211 cites W2155399784 @default.
- W2785321211 cites W2165183468 @default.
- W2785321211 cites W2216536395 @default.
- W2785321211 cites W2276751812 @default.
- W2785321211 cites W2293349767 @default.
- W2785321211 cites W2600573279 @default.
- W2785321211 cites W2748859796 @default.
- W2785321211 doi "https://doi.org/10.1016/j.inpa.2018.01.003" @default.
- W2785321211 hasPublicationYear "2018" @default.
- W2785321211 type Work @default.
- W2785321211 sameAs 2785321211 @default.
- W2785321211 citedByCount "32" @default.
- W2785321211 countsByYear W27853212112019 @default.
- W2785321211 countsByYear W27853212112020 @default.
- W2785321211 countsByYear W27853212112021 @default.
- W2785321211 countsByYear W27853212112022 @default.
- W2785321211 countsByYear W27853212112023 @default.
- W2785321211 crossrefType "journal-article" @default.
- W2785321211 hasAuthorship W2785321211A5046998811 @default.
- W2785321211 hasAuthorship W2785321211A5050035832 @default.
- W2785321211 hasAuthorship W2785321211A5053236680 @default.
- W2785321211 hasAuthorship W2785321211A5062634871 @default.
- W2785321211 hasAuthorship W2785321211A5070672761 @default.
- W2785321211 hasBestOaLocation W27853212111 @default.
- W2785321211 hasConcept C105795698 @default.
- W2785321211 hasConcept C119857082 @default.
- W2785321211 hasConcept C122280245 @default.
- W2785321211 hasConcept C12267149 @default.
- W2785321211 hasConcept C127413603 @default.
- W2785321211 hasConcept C139945424 @default.
- W2785321211 hasConcept C144027150 @default.
- W2785321211 hasConcept C154945302 @default.
- W2785321211 hasConcept C27158222 @default.
- W2785321211 hasConcept C32198211 @default.
- W2785321211 hasConcept C33923547 @default.
- W2785321211 hasConcept C41008148 @default.
- W2785321211 hasConcept C50644808 @default.
- W2785321211 hasConcept C75866337 @default.
- W2785321211 hasConcept C86803240 @default.
- W2785321211 hasConceptScore W2785321211C105795698 @default.
- W2785321211 hasConceptScore W2785321211C119857082 @default.
- W2785321211 hasConceptScore W2785321211C122280245 @default.
- W2785321211 hasConceptScore W2785321211C12267149 @default.
- W2785321211 hasConceptScore W2785321211C127413603 @default.
- W2785321211 hasConceptScore W2785321211C139945424 @default.
- W2785321211 hasConceptScore W2785321211C144027150 @default.
- W2785321211 hasConceptScore W2785321211C154945302 @default.
- W2785321211 hasConceptScore W2785321211C27158222 @default.
- W2785321211 hasConceptScore W2785321211C32198211 @default.
- W2785321211 hasConceptScore W2785321211C33923547 @default.
- W2785321211 hasConceptScore W2785321211C41008148 @default.
- W2785321211 hasConceptScore W2785321211C50644808 @default.
- W2785321211 hasConceptScore W2785321211C75866337 @default.
- W2785321211 hasConceptScore W2785321211C86803240 @default.
- W2785321211 hasIssue "2" @default.
- W2785321211 hasLocation W27853212111 @default.
- W2785321211 hasOpenAccess W2785321211 @default.
- W2785321211 hasPrimaryLocation W27853212111 @default.
- W2785321211 hasRelatedWork W2539163683 @default.
- W2785321211 hasRelatedWork W2937631562 @default.
- W2785321211 hasRelatedWork W3136979370 @default.
- W2785321211 hasRelatedWork W3194539120 @default.
- W2785321211 hasRelatedWork W3195168932 @default.
- W2785321211 hasRelatedWork W3210403783 @default.