Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785348052> ?p ?o ?g. }
- W2785348052 abstract "We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy. We prove that the formula holds at leading order in $1/N$ and further argue that it will not be affected at higher orders. We conjecture that the QNEC is saturated in all interacting theories. We also discuss the special case of free theories, and the implications of our formula for the averaged null energy condition, quantum focusing conjecture (QFC), and gravitational equations of motion. We show that the leading-order gravitational equations of motion, Einstein's equations, are equivalent to the leading-order saturation of the QFC for Planck-width deformations." @default.
- W2785348052 created "2018-02-23" @default.
- W2785348052 creator A5033284080 @default.
- W2785348052 creator A5071476527 @default.
- W2785348052 creator A5077235058 @default.
- W2785348052 date "2018-10-10" @default.
- W2785348052 modified "2023-10-16" @default.
- W2785348052 title "Energy density from second shape variations of the von Neumann entropy" @default.
- W2785348052 cites W1554471930 @default.
- W2785348052 cites W1591388661 @default.
- W2785348052 cites W1883696910 @default.
- W2785348052 cites W1971294822 @default.
- W2785348052 cites W1971615006 @default.
- W2785348052 cites W1973854962 @default.
- W2785348052 cites W2028882722 @default.
- W2785348052 cites W2034493186 @default.
- W2785348052 cites W2037688119 @default.
- W2785348052 cites W2040287440 @default.
- W2785348052 cites W2052723426 @default.
- W2785348052 cites W2099204364 @default.
- W2785348052 cites W2109772325 @default.
- W2785348052 cites W2109819630 @default.
- W2785348052 cites W2110283120 @default.
- W2785348052 cites W2143018662 @default.
- W2785348052 cites W2151993464 @default.
- W2785348052 cites W2157169018 @default.
- W2785348052 cites W2199268804 @default.
- W2785348052 cites W2270074405 @default.
- W2785348052 cites W2325940665 @default.
- W2785348052 cites W2532366641 @default.
- W2785348052 cites W2586549544 @default.
- W2785348052 cites W2604578214 @default.
- W2785348052 cites W2620973040 @default.
- W2785348052 cites W2760860222 @default.
- W2785348052 cites W2767114084 @default.
- W2785348052 cites W2768019888 @default.
- W2785348052 cites W3098768398 @default.
- W2785348052 cites W3098991820 @default.
- W2785348052 cites W3099087296 @default.
- W2785348052 cites W3099557270 @default.
- W2785348052 cites W3100181741 @default.
- W2785348052 cites W3100245117 @default.
- W2785348052 cites W3100437125 @default.
- W2785348052 cites W3100909180 @default.
- W2785348052 cites W3100938138 @default.
- W2785348052 cites W3101004335 @default.
- W2785348052 cites W3103146411 @default.
- W2785348052 cites W3103974207 @default.
- W2785348052 cites W3104560641 @default.
- W2785348052 doi "https://doi.org/10.1103/physrevd.98.086013" @default.
- W2785348052 hasPublicationYear "2018" @default.
- W2785348052 type Work @default.
- W2785348052 sameAs 2785348052 @default.
- W2785348052 citedByCount "30" @default.
- W2785348052 countsByYear W27853480522018 @default.
- W2785348052 countsByYear W27853480522019 @default.
- W2785348052 countsByYear W27853480522020 @default.
- W2785348052 countsByYear W27853480522021 @default.
- W2785348052 countsByYear W27853480522022 @default.
- W2785348052 countsByYear W27853480522023 @default.
- W2785348052 crossrefType "journal-article" @default.
- W2785348052 hasAuthorship W2785348052A5033284080 @default.
- W2785348052 hasAuthorship W2785348052A5071476527 @default.
- W2785348052 hasAuthorship W2785348052A5077235058 @default.
- W2785348052 hasBestOaLocation W27853480521 @default.
- W2785348052 hasConcept C101973423 @default.
- W2785348052 hasConcept C106301342 @default.
- W2785348052 hasConcept C121040770 @default.
- W2785348052 hasConcept C121332964 @default.
- W2785348052 hasConcept C124017977 @default.
- W2785348052 hasConcept C130367717 @default.
- W2785348052 hasConcept C139356082 @default.
- W2785348052 hasConcept C146846114 @default.
- W2785348052 hasConcept C15184713 @default.
- W2785348052 hasConcept C202444582 @default.
- W2785348052 hasConcept C203763787 @default.
- W2785348052 hasConcept C24495805 @default.
- W2785348052 hasConcept C2524010 @default.
- W2785348052 hasConcept C2780990831 @default.
- W2785348052 hasConcept C33923547 @default.
- W2785348052 hasConcept C37914503 @default.
- W2785348052 hasConcept C41008148 @default.
- W2785348052 hasConcept C62520636 @default.
- W2785348052 hasConcept C74650414 @default.
- W2785348052 hasConcept C77088390 @default.
- W2785348052 hasConcept C84114770 @default.
- W2785348052 hasConceptScore W2785348052C101973423 @default.
- W2785348052 hasConceptScore W2785348052C106301342 @default.
- W2785348052 hasConceptScore W2785348052C121040770 @default.
- W2785348052 hasConceptScore W2785348052C121332964 @default.
- W2785348052 hasConceptScore W2785348052C124017977 @default.
- W2785348052 hasConceptScore W2785348052C130367717 @default.
- W2785348052 hasConceptScore W2785348052C139356082 @default.
- W2785348052 hasConceptScore W2785348052C146846114 @default.
- W2785348052 hasConceptScore W2785348052C15184713 @default.
- W2785348052 hasConceptScore W2785348052C202444582 @default.
- W2785348052 hasConceptScore W2785348052C203763787 @default.
- W2785348052 hasConceptScore W2785348052C24495805 @default.
- W2785348052 hasConceptScore W2785348052C2524010 @default.
- W2785348052 hasConceptScore W2785348052C2780990831 @default.