Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785355890> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2785355890 abstract "Classifying large scale networks into several categories and distinguishing them according to their fine structures is of great importance with several applications in real life. However, most studies of complex networks focus on properties of a single network but seldom on classification, clustering, and comparison between different networks, in which the network is treated as a whole. Due to the non-Euclidean properties of the data, conventional methods can hardly be applied on networks directly. In this paper, we propose a novel framework of complex network classifier (CNC) by integrating network embedding and convolutional neural network to tackle the problem of network classification. By training the classifiers on synthetic complex network data and real international trade network data, we show CNC can not only classify networks in a high accuracy and robustness, it can also extract the features of the networks automatically." @default.
- W2785355890 created "2018-02-23" @default.
- W2785355890 creator A5065286115 @default.
- W2785355890 creator A5073878572 @default.
- W2785355890 creator A5087107383 @default.
- W2785355890 date "2018-02-02" @default.
- W2785355890 modified "2023-09-27" @default.
- W2785355890 title "Complex Network Classification with Convolutional Neural Network" @default.
- W2785355890 cites W1686810756 @default.
- W2785355890 cites W1835509607 @default.
- W2785355890 cites W2001141328 @default.
- W2785355890 cites W2008620264 @default.
- W2785355890 cites W2008857988 @default.
- W2785355890 cites W2053186076 @default.
- W2785355890 cites W2112090702 @default.
- W2785355890 cites W2116341502 @default.
- W2785355890 cites W2120615054 @default.
- W2785355890 cites W2142498761 @default.
- W2785355890 cites W2143612262 @default.
- W2785355890 cites W2147286743 @default.
- W2785355890 cites W2150649057 @default.
- W2785355890 cites W2159156271 @default.
- W2785355890 cites W2395611524 @default.
- W2785355890 cites W2558748708 @default.
- W2785355890 cites W2950898568 @default.
- W2785355890 cites W2962756421 @default.
- W2785355890 cites W2964311892 @default.
- W2785355890 cites W2964321699 @default.
- W2785355890 cites W3105705953 @default.
- W2785355890 cites W637153065 @default.
- W2785355890 hasPublicationYear "2018" @default.
- W2785355890 type Work @default.
- W2785355890 sameAs 2785355890 @default.
- W2785355890 citedByCount "0" @default.
- W2785355890 crossrefType "posted-content" @default.
- W2785355890 hasAuthorship W2785355890A5065286115 @default.
- W2785355890 hasAuthorship W2785355890A5073878572 @default.
- W2785355890 hasAuthorship W2785355890A5087107383 @default.
- W2785355890 hasConcept C104317684 @default.
- W2785355890 hasConcept C119857082 @default.
- W2785355890 hasConcept C124101348 @default.
- W2785355890 hasConcept C136764020 @default.
- W2785355890 hasConcept C154945302 @default.
- W2785355890 hasConcept C185592680 @default.
- W2785355890 hasConcept C34947359 @default.
- W2785355890 hasConcept C41008148 @default.
- W2785355890 hasConcept C41608201 @default.
- W2785355890 hasConcept C50644808 @default.
- W2785355890 hasConcept C55493867 @default.
- W2785355890 hasConcept C63479239 @default.
- W2785355890 hasConcept C73555534 @default.
- W2785355890 hasConcept C81363708 @default.
- W2785355890 hasConcept C95623464 @default.
- W2785355890 hasConceptScore W2785355890C104317684 @default.
- W2785355890 hasConceptScore W2785355890C119857082 @default.
- W2785355890 hasConceptScore W2785355890C124101348 @default.
- W2785355890 hasConceptScore W2785355890C136764020 @default.
- W2785355890 hasConceptScore W2785355890C154945302 @default.
- W2785355890 hasConceptScore W2785355890C185592680 @default.
- W2785355890 hasConceptScore W2785355890C34947359 @default.
- W2785355890 hasConceptScore W2785355890C41008148 @default.
- W2785355890 hasConceptScore W2785355890C41608201 @default.
- W2785355890 hasConceptScore W2785355890C50644808 @default.
- W2785355890 hasConceptScore W2785355890C55493867 @default.
- W2785355890 hasConceptScore W2785355890C63479239 @default.
- W2785355890 hasConceptScore W2785355890C73555534 @default.
- W2785355890 hasConceptScore W2785355890C81363708 @default.
- W2785355890 hasConceptScore W2785355890C95623464 @default.
- W2785355890 hasLocation W27853558901 @default.
- W2785355890 hasOpenAccess W2785355890 @default.
- W2785355890 hasPrimaryLocation W27853558901 @default.
- W2785355890 hasRelatedWork W2015319504 @default.
- W2785355890 hasRelatedWork W2058307353 @default.
- W2785355890 hasRelatedWork W2167191594 @default.
- W2785355890 hasRelatedWork W2182518945 @default.
- W2785355890 hasRelatedWork W2288304434 @default.
- W2785355890 hasRelatedWork W2592004655 @default.
- W2785355890 hasRelatedWork W2770637343 @default.
- W2785355890 hasRelatedWork W2773983064 @default.
- W2785355890 hasRelatedWork W2793057521 @default.
- W2785355890 hasRelatedWork W2898652502 @default.
- W2785355890 hasRelatedWork W2932454681 @default.
- W2785355890 hasRelatedWork W2951279106 @default.
- W2785355890 hasRelatedWork W3025825613 @default.
- W2785355890 hasRelatedWork W3144858871 @default.
- W2785355890 hasRelatedWork W3167091510 @default.
- W2785355890 hasRelatedWork W3177498975 @default.
- W2785355890 hasRelatedWork W3184415262 @default.
- W2785355890 hasRelatedWork W3209614249 @default.
- W2785355890 hasRelatedWork W46899209 @default.
- W2785355890 hasRelatedWork W3116787185 @default.
- W2785355890 isParatext "false" @default.
- W2785355890 isRetracted "false" @default.
- W2785355890 magId "2785355890" @default.
- W2785355890 workType "article" @default.