Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785398889> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2785398889 abstract "The mathematical formulation of various control synthesis problems , (such as Decentralized Stabilization Problem , (DSP) , Total Finite Settling Time Stabilization for discrete time linear systems, (TFSTS) , Exact Model Matching Problem, (EMMP), Decoupling and Noninteracting Control Problems) , via the algebraic framework of Matrix Fractional Representation . (MFR) - i.e. the representation of the transfer matrices of the system as matrix fractions over the ring of interest - results to the study of matrix equations over rings , such as :A . X + B . Y = C , (X. A + Y . B =C)(1)A· X = B , (y. A = B)(2)A·X·B = C(3)A·X + Y·B = C, X·A + B·Y = C, A·X·B + C·Y·D = E(4)The main objective of this dissertation is to further investigate conditions for existence and characterization of certain types of solutions of equation (1) ; develop a unifying algebraic approach for solvability and characterization of solutions of equations (1) - (4), based on structural properties of the given matrices, over the ring of interest. The standard matrix Diophantine equation (1) is associated with the TFSTS for discrete time linear systems and issues concerning the characterization of solutions according 'to the Extended McMillan Degree, (EMD) , (minimum EMD , or fixed EMD) , of the stabilizing controllers they define , are studied . A link between the issues in question and topological properties of certain families of solutions of (1) is established . Equation (1) is also studied in association with the DSP and Diagonal DSP (DDSP) , for continuous time linear systems . Conditions for characterizing block diagonal solutions of (1) , (which define decentralized stabilizing controllers) , are derived and a closed form description of the families of diagonal and two blocks diagonal decentralized stabilizing controllers is introduced. The set of matrix equations (1) - (4) is assumed over the field of fractions of the ring of interest , ℛ , (mainly a Euclidean Domain, (ED) , and thus a Principal Ideal Domain , (PID)) , and solvability as well as parametrization of solutions over ℛ is investigated under the unifying algebraic framework of extended non square matrix divisors , projectors and annihilators of the known matrices over ℛ . In practice the ring of interest is either the ring of polynomials ℝ [s] , or the rings of proper ℝ" @default.
- W2785398889 created "2018-02-23" @default.
- W2785398889 creator A5060505101 @default.
- W2785398889 date "1995-01-01" @default.
- W2785398889 modified "2023-09-27" @default.
- W2785398889 title "Algebraic synthesis methods for linear multivariable control systems" @default.
- W2785398889 hasPublicationYear "1995" @default.
- W2785398889 type Work @default.
- W2785398889 sameAs 2785398889 @default.
- W2785398889 citedByCount "0" @default.
- W2785398889 crossrefType "dissertation" @default.
- W2785398889 hasAuthorship W2785398889A5060505101 @default.
- W2785398889 hasConcept C106487976 @default.
- W2785398889 hasConcept C121332964 @default.
- W2785398889 hasConcept C130367717 @default.
- W2785398889 hasConcept C134306372 @default.
- W2785398889 hasConcept C158693339 @default.
- W2785398889 hasConcept C159985019 @default.
- W2785398889 hasConcept C192562407 @default.
- W2785398889 hasConcept C202444582 @default.
- W2785398889 hasConcept C206530611 @default.
- W2785398889 hasConcept C2524010 @default.
- W2785398889 hasConcept C28826006 @default.
- W2785398889 hasConcept C33923547 @default.
- W2785398889 hasConcept C62520636 @default.
- W2785398889 hasConcept C6802819 @default.
- W2785398889 hasConcept C85817219 @default.
- W2785398889 hasConcept C9376300 @default.
- W2785398889 hasConceptScore W2785398889C106487976 @default.
- W2785398889 hasConceptScore W2785398889C121332964 @default.
- W2785398889 hasConceptScore W2785398889C130367717 @default.
- W2785398889 hasConceptScore W2785398889C134306372 @default.
- W2785398889 hasConceptScore W2785398889C158693339 @default.
- W2785398889 hasConceptScore W2785398889C159985019 @default.
- W2785398889 hasConceptScore W2785398889C192562407 @default.
- W2785398889 hasConceptScore W2785398889C202444582 @default.
- W2785398889 hasConceptScore W2785398889C206530611 @default.
- W2785398889 hasConceptScore W2785398889C2524010 @default.
- W2785398889 hasConceptScore W2785398889C28826006 @default.
- W2785398889 hasConceptScore W2785398889C33923547 @default.
- W2785398889 hasConceptScore W2785398889C62520636 @default.
- W2785398889 hasConceptScore W2785398889C6802819 @default.
- W2785398889 hasConceptScore W2785398889C85817219 @default.
- W2785398889 hasConceptScore W2785398889C9376300 @default.
- W2785398889 hasLocation W27853988891 @default.
- W2785398889 hasOpenAccess W2785398889 @default.
- W2785398889 hasPrimaryLocation W27853988891 @default.
- W2785398889 hasRelatedWork W1552451785 @default.
- W2785398889 hasRelatedWork W1595147567 @default.
- W2785398889 hasRelatedWork W174935439 @default.
- W2785398889 hasRelatedWork W1898665762 @default.
- W2785398889 hasRelatedWork W1993638797 @default.
- W2785398889 hasRelatedWork W2007900146 @default.
- W2785398889 hasRelatedWork W2023201946 @default.
- W2785398889 hasRelatedWork W2036536772 @default.
- W2785398889 hasRelatedWork W2095730354 @default.
- W2785398889 hasRelatedWork W2110811844 @default.
- W2785398889 hasRelatedWork W2187432363 @default.
- W2785398889 hasRelatedWork W2253489259 @default.
- W2785398889 hasRelatedWork W2515061093 @default.
- W2785398889 hasRelatedWork W2747059912 @default.
- W2785398889 hasRelatedWork W2893452648 @default.
- W2785398889 hasRelatedWork W3105995084 @default.
- W2785398889 hasRelatedWork W3170206236 @default.
- W2785398889 hasRelatedWork W3170904146 @default.
- W2785398889 hasRelatedWork W3201539781 @default.
- W2785398889 hasRelatedWork W813722480 @default.
- W2785398889 isParatext "false" @default.
- W2785398889 isRetracted "false" @default.
- W2785398889 magId "2785398889" @default.
- W2785398889 workType "dissertation" @default.