Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785449603> ?p ?o ?g. }
- W2785449603 endingPage "294" @default.
- W2785449603 startingPage "282" @default.
- W2785449603 abstract "Background: To reduce the intensity of the work of doctors, pre-classification work needs to be issued. In this paper, a novel and related liver microscopic image classification analysis method is proposed. Objective: For quantitative analysis, segmentation is carried out to extract the quantitative information of special organisms in the image for further diagnosis, lesion localization, learning and treating anatomical abnormalities and computer-guided surgery. </P><P> Methods: In the current work, entropy-based features of microscopic fibrosis mice’ liver images were analyzed using fuzzy c-cluster, k-means and watershed algorithms based on distance transformations and gradient. A morphological segmentation based on a local threshold was deployed to determine the fibrosis areas of images. Results: The segmented target region using the proposed method achieved high effective microscopy fibrosis images segmenting of mice liver in terms of the running time, dice ratio and precision. The image classification experiments were conducted using Gray Level Co-occurrence Matrix (GLCM). The best classification model derived from the established characteristics was GLCM which performed the highest accuracy of classification using a developed Support Vector Machine (SVM). The training model using 11 features was found to be accurate when only trained by 8 GLCMs. Conclusion: The research illustrated that the proposed method is a new feasible research approach for microscopy mice liver image segmentation and classification using intelligent image analysis techniques. It is also reported that the average computational time of the proposed approach was only 2.335 seconds, which outperformed other segmentation algorithms with 0.8125 dice ratio and 0.5253 precision.</P>" @default.
- W2785449603 created "2018-02-23" @default.
- W2785449603 creator A5000386256 @default.
- W2785449603 creator A5000975435 @default.
- W2785449603 creator A5002654622 @default.
- W2785449603 creator A5007225481 @default.
- W2785449603 creator A5035130915 @default.
- W2785449603 creator A5037566676 @default.
- W2785449603 creator A5041146584 @default.
- W2785449603 creator A5068271733 @default.
- W2785449603 creator A5071669728 @default.
- W2785449603 date "2019-04-10" @default.
- W2785449603 modified "2023-10-18" @default.
- W2785449603 title "Morphological Segmentation Analysis and Texture-based Support Vector Machines Classification on Mice Liver Fibrosis Microscopic Images" @default.
- W2785449603 cites W1145823428 @default.
- W2785449603 cites W1795831135 @default.
- W2785449603 cites W1852394669 @default.
- W2785449603 cites W1968807224 @default.
- W2785449603 cites W2017049237 @default.
- W2785449603 cites W2022141534 @default.
- W2785449603 cites W2023353513 @default.
- W2785449603 cites W2025773414 @default.
- W2785449603 cites W2035186208 @default.
- W2785449603 cites W2068450682 @default.
- W2785449603 cites W2069533927 @default.
- W2785449603 cites W2079088467 @default.
- W2785449603 cites W2106278161 @default.
- W2785449603 cites W2282994351 @default.
- W2785449603 cites W2294557914 @default.
- W2785449603 cites W2337550929 @default.
- W2785449603 cites W2347014544 @default.
- W2785449603 cites W2363819711 @default.
- W2785449603 cites W2478211123 @default.
- W2785449603 cites W2500440716 @default.
- W2785449603 cites W2509766993 @default.
- W2785449603 cites W2510207669 @default.
- W2785449603 cites W2511428695 @default.
- W2785449603 cites W2525856164 @default.
- W2785449603 cites W2550993058 @default.
- W2785449603 cites W2557674609 @default.
- W2785449603 cites W2619275962 @default.
- W2785449603 cites W403053820 @default.
- W2785449603 cites W4238921364 @default.
- W2785449603 doi "https://doi.org/10.2174/1574893614666190304125221" @default.
- W2785449603 hasPublicationYear "2019" @default.
- W2785449603 type Work @default.
- W2785449603 sameAs 2785449603 @default.
- W2785449603 citedByCount "49" @default.
- W2785449603 countsByYear W27854496032018 @default.
- W2785449603 countsByYear W27854496032019 @default.
- W2785449603 countsByYear W27854496032020 @default.
- W2785449603 countsByYear W27854496032021 @default.
- W2785449603 countsByYear W27854496032022 @default.
- W2785449603 countsByYear W27854496032023 @default.
- W2785449603 crossrefType "journal-article" @default.
- W2785449603 hasAuthorship W2785449603A5000386256 @default.
- W2785449603 hasAuthorship W2785449603A5000975435 @default.
- W2785449603 hasAuthorship W2785449603A5002654622 @default.
- W2785449603 hasAuthorship W2785449603A5007225481 @default.
- W2785449603 hasAuthorship W2785449603A5035130915 @default.
- W2785449603 hasAuthorship W2785449603A5037566676 @default.
- W2785449603 hasAuthorship W2785449603A5041146584 @default.
- W2785449603 hasAuthorship W2785449603A5068271733 @default.
- W2785449603 hasAuthorship W2785449603A5071669728 @default.
- W2785449603 hasBestOaLocation W27854496032 @default.
- W2785449603 hasConcept C115961682 @default.
- W2785449603 hasConcept C12267149 @default.
- W2785449603 hasConcept C124504099 @default.
- W2785449603 hasConcept C153180895 @default.
- W2785449603 hasConcept C154945302 @default.
- W2785449603 hasConcept C2985861186 @default.
- W2785449603 hasConcept C31972630 @default.
- W2785449603 hasConcept C41008148 @default.
- W2785449603 hasConcept C58166 @default.
- W2785449603 hasConcept C89600930 @default.
- W2785449603 hasConceptScore W2785449603C115961682 @default.
- W2785449603 hasConceptScore W2785449603C12267149 @default.
- W2785449603 hasConceptScore W2785449603C124504099 @default.
- W2785449603 hasConceptScore W2785449603C153180895 @default.
- W2785449603 hasConceptScore W2785449603C154945302 @default.
- W2785449603 hasConceptScore W2785449603C2985861186 @default.
- W2785449603 hasConceptScore W2785449603C31972630 @default.
- W2785449603 hasConceptScore W2785449603C41008148 @default.
- W2785449603 hasConceptScore W2785449603C58166 @default.
- W2785449603 hasConceptScore W2785449603C89600930 @default.
- W2785449603 hasFunder F4320310111 @default.
- W2785449603 hasFunder F4320321001 @default.
- W2785449603 hasFunder F4320338464 @default.
- W2785449603 hasIssue "4" @default.
- W2785449603 hasLocation W27854496031 @default.
- W2785449603 hasLocation W27854496032 @default.
- W2785449603 hasOpenAccess W2785449603 @default.
- W2785449603 hasPrimaryLocation W27854496031 @default.
- W2785449603 hasRelatedWork W148178222 @default.
- W2785449603 hasRelatedWork W1522196789 @default.
- W2785449603 hasRelatedWork W1886884218 @default.
- W2785449603 hasRelatedWork W1980100242 @default.
- W2785449603 hasRelatedWork W2051187167 @default.