Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785489564> ?p ?o ?g. }
- W2785489564 endingPage "8744" @default.
- W2785489564 startingPage "8727" @default.
- W2785489564 abstract "Abstract. In this study we introduce a hybrid ensemble consisting of air quality models operating at both the global and regional scale. The work is motivated by the fact that these different types of models treat specific portions of the atmospheric spectrum with different levels of detail, and it is hypothesized that their combination can generate an ensemble that performs better than mono-scale ensembles. A detailed analysis of the hybrid ensemble is carried out in the attempt to investigate this hypothesis and determine the real benefit it produces compared to ensembles constructed from only global-scale or only regional-scale models. The study utilizes 13 regional and 7 global models participating in the Hemispheric Transport of Air Pollutants phase 2 (HTAP2)–Air Quality Model Evaluation International Initiative phase 3 (AQMEII3) activity and focuses on surface ozone concentrations over Europe for the year 2010. Observations from 405 monitoring rural stations are used for the evaluation of the ensemble performance. The analysis first compares the modelled and measured power spectra of all models and then assesses the properties of the mono-scale ensembles, particularly their level of redundancy, in order to inform the process of constructing the hybrid ensemble. This study has been conducted in the attempt to identify that the improvements obtained by the hybrid ensemble relative to the mono-scale ensembles can be attributed to its hybrid nature. The improvements are visible in a slight increase of the diversity (4 % for the hourly time series, 10 % for the daily maximum time series) and a smaller improvement of the accuracy compared to diversity. Root mean square error (RMSE) improved by 13–16 % compared to G and by 2–3 % compared to R. Probability of detection (POD) and false-alarm rate (FAR) show a remarkable improvement, with a steep increase in the largest POD values and smallest values of FAR across the concentration ranges. The results show that the optimal set is constructed from an equal number of global and regional models at only 15 % of the stations. This implies that for the majority of the cases the regional-scale set of models governs the ensemble. However given the high degree of redundancy that characterizes the regional-scale models, no further improvement could be expected in the ensemble performance by adding yet more regional models to it. Therefore the improvement obtained with the hybrid set can confidently be attributed to the different nature of the global models. The study strongly reaffirms the importance of an in-depth inspection of any ensemble of opportunity in order to extract the maximum amount of information and to have full control over the data used in the construction of the ensemble." @default.
- W2785489564 created "2018-02-23" @default.
- W2785489564 creator A5001078849 @default.
- W2785489564 creator A5003332383 @default.
- W2785489564 creator A5007569690 @default.
- W2785489564 creator A5008813363 @default.
- W2785489564 creator A5010089493 @default.
- W2785489564 creator A5013415968 @default.
- W2785489564 creator A5016726854 @default.
- W2785489564 creator A5023118917 @default.
- W2785489564 creator A5027542322 @default.
- W2785489564 creator A5027645403 @default.
- W2785489564 creator A5030027304 @default.
- W2785489564 creator A5031099935 @default.
- W2785489564 creator A5031935547 @default.
- W2785489564 creator A5033618096 @default.
- W2785489564 creator A5038903661 @default.
- W2785489564 creator A5039946811 @default.
- W2785489564 creator A5041720030 @default.
- W2785489564 creator A5043348216 @default.
- W2785489564 creator A5047070038 @default.
- W2785489564 creator A5048065624 @default.
- W2785489564 creator A5050347584 @default.
- W2785489564 creator A5051496928 @default.
- W2785489564 creator A5051734213 @default.
- W2785489564 creator A5055820726 @default.
- W2785489564 creator A5055984684 @default.
- W2785489564 creator A5058462310 @default.
- W2785489564 creator A5062518836 @default.
- W2785489564 creator A5063060827 @default.
- W2785489564 creator A5064060642 @default.
- W2785489564 creator A5065899366 @default.
- W2785489564 creator A5067625332 @default.
- W2785489564 creator A5075341293 @default.
- W2785489564 creator A5076395607 @default.
- W2785489564 creator A5078156106 @default.
- W2785489564 creator A5078541302 @default.
- W2785489564 creator A5079788277 @default.
- W2785489564 creator A5082376596 @default.
- W2785489564 creator A5084850038 @default.
- W2785489564 creator A5090947752 @default.
- W2785489564 date "2018-06-21" @default.
- W2785489564 modified "2023-10-01" @default.
- W2785489564 title "Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more?" @default.
- W2785489564 cites W1802266752 @default.
- W2785489564 cites W1966383167 @default.
- W2785489564 cites W1978316624 @default.
- W2785489564 cites W1978999761 @default.
- W2785489564 cites W1980254188 @default.
- W2785489564 cites W1981009100 @default.
- W2785489564 cites W2006043010 @default.
- W2785489564 cites W2018760167 @default.
- W2785489564 cites W2038127554 @default.
- W2785489564 cites W2051043343 @default.
- W2785489564 cites W2056070417 @default.
- W2785489564 cites W2057288668 @default.
- W2785489564 cites W2066305270 @default.
- W2785489564 cites W2079599758 @default.
- W2785489564 cites W2085007422 @default.
- W2785489564 cites W2098004651 @default.
- W2785489564 cites W2098339394 @default.
- W2785489564 cites W2100956194 @default.
- W2785489564 cites W2102884730 @default.
- W2785489564 cites W2126132338 @default.
- W2785489564 cites W2128738304 @default.
- W2785489564 cites W2135948793 @default.
- W2785489564 cites W2145411928 @default.
- W2785489564 cites W2154645596 @default.
- W2785489564 cites W2161493930 @default.
- W2785489564 cites W2177291244 @default.
- W2785489564 cites W2507792507 @default.
- W2785489564 cites W2563954713 @default.
- W2785489564 cites W2584923509 @default.
- W2785489564 cites W2610650693 @default.
- W2785489564 cites W2759099736 @default.
- W2785489564 cites W4253114118 @default.
- W2785489564 doi "https://doi.org/10.5194/acp-18-8727-2018" @default.
- W2785489564 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6452644" @default.
- W2785489564 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30972110" @default.
- W2785489564 hasPublicationYear "2018" @default.
- W2785489564 type Work @default.
- W2785489564 sameAs 2785489564 @default.
- W2785489564 citedByCount "10" @default.
- W2785489564 countsByYear W27854895642018 @default.
- W2785489564 countsByYear W27854895642020 @default.
- W2785489564 countsByYear W27854895642021 @default.
- W2785489564 countsByYear W27854895642022 @default.
- W2785489564 countsByYear W27854895642023 @default.
- W2785489564 crossrefType "journal-article" @default.
- W2785489564 hasAuthorship W2785489564A5001078849 @default.
- W2785489564 hasAuthorship W2785489564A5003332383 @default.
- W2785489564 hasAuthorship W2785489564A5007569690 @default.
- W2785489564 hasAuthorship W2785489564A5008813363 @default.
- W2785489564 hasAuthorship W2785489564A5010089493 @default.
- W2785489564 hasAuthorship W2785489564A5013415968 @default.
- W2785489564 hasAuthorship W2785489564A5016726854 @default.
- W2785489564 hasAuthorship W2785489564A5023118917 @default.
- W2785489564 hasAuthorship W2785489564A5027542322 @default.