Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785495800> ?p ?o ?g. }
- W2785495800 abstract "The growing importance of massive datasets used for deep learning makes robustness to label noise a critical property for classifiers to have. Sources of label noise include automatic labeling, non-expert labeling, and label corruption by data poisoning adversaries. Numerous previous works assume that no source of labels can be trusted. We relax this assumption and assume that a small subset of the training data is trusted. This enables substantial label corruption robustness performance gains. In addition, particularly severe label noise can be combated by using a set of trusted data with clean labels. We utilize trusted data by proposing a loss correction technique that utilizes trusted examples in a data-efficient manner to mitigate the effects of label noise on deep neural network classifiers. Across vision and natural language processing tasks, we experiment with various label noises at several strengths, and show that our method significantly outperforms existing methods." @default.
- W2785495800 created "2018-02-23" @default.
- W2785495800 creator A5020400986 @default.
- W2785495800 creator A5030839081 @default.
- W2785495800 creator A5058254793 @default.
- W2785495800 creator A5081022650 @default.
- W2785495800 date "2018-02-14" @default.
- W2785495800 modified "2023-09-27" @default.
- W2785495800 title "Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise" @default.
- W2785495800 cites W1921293667 @default.
- W2785495800 cites W1994550352 @default.
- W2785495800 cites W2034841618 @default.
- W2785495800 cites W2095705004 @default.
- W2785495800 cites W2108933033 @default.
- W2785495800 cites W2113290770 @default.
- W2785495800 cites W2113459411 @default.
- W2785495800 cites W2136504847 @default.
- W2785495800 cites W2157550316 @default.
- W2785495800 cites W2157765050 @default.
- W2785495800 cites W2167460663 @default.
- W2785495800 cites W2187013920 @default.
- W2785495800 cites W2251939518 @default.
- W2785495800 cites W2252268321 @default.
- W2785495800 cites W2462831000 @default.
- W2785495800 cites W2554864439 @default.
- W2785495800 cites W2577784528 @default.
- W2785495800 cites W2626801932 @default.
- W2785495800 cites W2795282075 @default.
- W2785495800 cites W2949157943 @default.
- W2785495800 cites W2953328958 @default.
- W2785495800 cites W2962762541 @default.
- W2785495800 cites W2963263347 @default.
- W2785495800 cites W2963903822 @default.
- W2785495800 cites W2964121744 @default.
- W2785495800 cites W2964137095 @default.
- W2785495800 cites W2964212410 @default.
- W2785495800 cites W2964230093 @default.
- W2785495800 cites W2964292098 @default.
- W2785495800 cites W2973562770 @default.
- W2785495800 hasPublicationYear "2018" @default.
- W2785495800 type Work @default.
- W2785495800 sameAs 2785495800 @default.
- W2785495800 citedByCount "26" @default.
- W2785495800 countsByYear W27854958002018 @default.
- W2785495800 countsByYear W27854958002019 @default.
- W2785495800 countsByYear W27854958002020 @default.
- W2785495800 countsByYear W27854958002021 @default.
- W2785495800 crossrefType "posted-content" @default.
- W2785495800 hasAuthorship W2785495800A5020400986 @default.
- W2785495800 hasAuthorship W2785495800A5030839081 @default.
- W2785495800 hasAuthorship W2785495800A5058254793 @default.
- W2785495800 hasAuthorship W2785495800A5081022650 @default.
- W2785495800 hasConcept C104317684 @default.
- W2785495800 hasConcept C108583219 @default.
- W2785495800 hasConcept C111472728 @default.
- W2785495800 hasConcept C115961682 @default.
- W2785495800 hasConcept C119857082 @default.
- W2785495800 hasConcept C121332964 @default.
- W2785495800 hasConcept C124101348 @default.
- W2785495800 hasConcept C138885662 @default.
- W2785495800 hasConcept C154945302 @default.
- W2785495800 hasConcept C157524613 @default.
- W2785495800 hasConcept C185592680 @default.
- W2785495800 hasConcept C189950617 @default.
- W2785495800 hasConcept C2781170535 @default.
- W2785495800 hasConcept C28490314 @default.
- W2785495800 hasConcept C2984842247 @default.
- W2785495800 hasConcept C41008148 @default.
- W2785495800 hasConcept C50644808 @default.
- W2785495800 hasConcept C51632099 @default.
- W2785495800 hasConcept C55493867 @default.
- W2785495800 hasConcept C62520636 @default.
- W2785495800 hasConcept C63479239 @default.
- W2785495800 hasConcept C99498987 @default.
- W2785495800 hasConceptScore W2785495800C104317684 @default.
- W2785495800 hasConceptScore W2785495800C108583219 @default.
- W2785495800 hasConceptScore W2785495800C111472728 @default.
- W2785495800 hasConceptScore W2785495800C115961682 @default.
- W2785495800 hasConceptScore W2785495800C119857082 @default.
- W2785495800 hasConceptScore W2785495800C121332964 @default.
- W2785495800 hasConceptScore W2785495800C124101348 @default.
- W2785495800 hasConceptScore W2785495800C138885662 @default.
- W2785495800 hasConceptScore W2785495800C154945302 @default.
- W2785495800 hasConceptScore W2785495800C157524613 @default.
- W2785495800 hasConceptScore W2785495800C185592680 @default.
- W2785495800 hasConceptScore W2785495800C189950617 @default.
- W2785495800 hasConceptScore W2785495800C2781170535 @default.
- W2785495800 hasConceptScore W2785495800C28490314 @default.
- W2785495800 hasConceptScore W2785495800C2984842247 @default.
- W2785495800 hasConceptScore W2785495800C41008148 @default.
- W2785495800 hasConceptScore W2785495800C50644808 @default.
- W2785495800 hasConceptScore W2785495800C51632099 @default.
- W2785495800 hasConceptScore W2785495800C55493867 @default.
- W2785495800 hasConceptScore W2785495800C62520636 @default.
- W2785495800 hasConceptScore W2785495800C63479239 @default.
- W2785495800 hasConceptScore W2785495800C99498987 @default.
- W2785495800 hasLocation W27854958001 @default.
- W2785495800 hasOpenAccess W2785495800 @default.
- W2785495800 hasPrimaryLocation W27854958001 @default.
- W2785495800 hasRelatedWork W1866072925 @default.