Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785593695> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2785593695 abstract "Methods in the domain of artificial intelligence (AI) have been applied to develop agents capable of playing a variety of games. The single-player variant of Snake is a well-known and popular video game that requires a player to navigate a line-based representation of a snake through a two-dimensional playing area, while avoiding collisions with the walls of the playing area and the body of the snake itself. A score and the snake length are increased whenever the snake is moved through items representing food. The game thus becomes more challenging as the score increases. The application of AI techniques to playing the game of Snake has not been very well explored. This paper proposes a novel technique that uses particle swarm optimization for the unsupervised training of neuro-controllers in order to play the game of Snake. The proposed technique assumes nothing about effective game playing strategies, and thus works with limited knowledge. Sensory input is also minimal. Due to the lack of similar AI-based approaches for playing Snake, the proposed technique is empirically compared against three hand-designed Snake playing agents in terms of several performance measures. The performance of the proposed technique demonstrates the feasibility of the approach, and suggests that future research into AI-based controllers for Snake will be fruitful." @default.
- W2785593695 created "2018-02-23" @default.
- W2785593695 creator A5063774442 @default.
- W2785593695 creator A5082446753 @default.
- W2785593695 creator A5087841058 @default.
- W2785593695 date "2017-11-01" @default.
- W2785593695 modified "2023-09-26" @default.
- W2785593695 title "Playing the game of snake with limited knowledge: Unsupervised neuro-controllers trained using particle swarm optimization" @default.
- W2785593695 cites W128245317 @default.
- W2785593695 cites W133222171 @default.
- W2785593695 cites W1480979729 @default.
- W2785593695 cites W1487104801 @default.
- W2785593695 cites W1554663460 @default.
- W2785593695 cites W1566008247 @default.
- W2785593695 cites W2100677568 @default.
- W2785593695 cites W2146934839 @default.
- W2785593695 cites W2165299997 @default.
- W2785593695 cites W2188146792 @default.
- W2785593695 cites W2257979135 @default.
- W2785593695 cites W2543580944 @default.
- W2785593695 cites W2599866750 @default.
- W2785593695 cites W3198350258 @default.
- W2785593695 cites W2182416457 @default.
- W2785593695 doi "https://doi.org/10.1109/iscmi.2017.8279602" @default.
- W2785593695 hasPublicationYear "2017" @default.
- W2785593695 type Work @default.
- W2785593695 sameAs 2785593695 @default.
- W2785593695 citedByCount "0" @default.
- W2785593695 crossrefType "proceedings-article" @default.
- W2785593695 hasAuthorship W2785593695A5063774442 @default.
- W2785593695 hasAuthorship W2785593695A5082446753 @default.
- W2785593695 hasAuthorship W2785593695A5087841058 @default.
- W2785593695 hasConcept C119857082 @default.
- W2785593695 hasConcept C134306372 @default.
- W2785593695 hasConcept C154945302 @default.
- W2785593695 hasConcept C33923547 @default.
- W2785593695 hasConcept C36503486 @default.
- W2785593695 hasConcept C41008148 @default.
- W2785593695 hasConcept C85617194 @default.
- W2785593695 hasConceptScore W2785593695C119857082 @default.
- W2785593695 hasConceptScore W2785593695C134306372 @default.
- W2785593695 hasConceptScore W2785593695C154945302 @default.
- W2785593695 hasConceptScore W2785593695C33923547 @default.
- W2785593695 hasConceptScore W2785593695C36503486 @default.
- W2785593695 hasConceptScore W2785593695C41008148 @default.
- W2785593695 hasConceptScore W2785593695C85617194 @default.
- W2785593695 hasLocation W27855936951 @default.
- W2785593695 hasOpenAccess W2785593695 @default.
- W2785593695 hasPrimaryLocation W27855936951 @default.
- W2785593695 hasRelatedWork W1502205195 @default.
- W2785593695 hasRelatedWork W2017387119 @default.
- W2785593695 hasRelatedWork W2036143874 @default.
- W2785593695 hasRelatedWork W2048287760 @default.
- W2785593695 hasRelatedWork W2065091168 @default.
- W2785593695 hasRelatedWork W2070380114 @default.
- W2785593695 hasRelatedWork W2088305047 @default.
- W2785593695 hasRelatedWork W2099645052 @default.
- W2785593695 hasRelatedWork W2105715007 @default.
- W2785593695 hasRelatedWork W23427608 @default.
- W2785593695 hasRelatedWork W2559225160 @default.
- W2785593695 hasRelatedWork W2579953740 @default.
- W2785593695 hasRelatedWork W2590714056 @default.
- W2785593695 hasRelatedWork W2599866750 @default.
- W2785593695 hasRelatedWork W2638172783 @default.
- W2785593695 hasRelatedWork W2890794102 @default.
- W2785593695 hasRelatedWork W2931755173 @default.
- W2785593695 hasRelatedWork W2998029079 @default.
- W2785593695 hasRelatedWork W3004543878 @default.
- W2785593695 hasRelatedWork W940504451 @default.
- W2785593695 isParatext "false" @default.
- W2785593695 isRetracted "false" @default.
- W2785593695 magId "2785593695" @default.
- W2785593695 workType "article" @default.