Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785672431> ?p ?o ?g. }
- W2785672431 abstract "The detection and recognition of a vehicle License Plate (LP) is a key technique in most of the applications related to vehicle movement. Moreover, it is a quite popular and active research topic in the field of image processing. Different methods, techniques and algorithms have been developed to detect and recognize LPs. Nevertheless, due to the LP characteristics that vary from one country to another in terms of numbering system, colors, language of characters, fonts and size. Further investigations are still needed in this field in order to make the detection and recognition process very efficient. Although this domain has been covered by a lot of researchers, various existing systems operate under well-defined and controlled conditions. For example, some frameworks require complicated hardware to make good quality images or capture images from vehicles with very slow speed. For this reason the detection and recognition of LPs in different conditions and under several climatic variations remains always difficult to realize with good results. For that, we present in this paper an automatic system for LP detection and recognition based on deep learning approach, which is divided into three parts: detection, segmentation, and character recognition. To detect an LP, many pretreatment steps should be made before applying the first Convolution Neural Network (CNN) model for the classification of plates / non-plates. Subsequently, we apply a few pre-processing steps to segment the LP and finally to recognize all the characters in upper case format (A-Z) and digits (0-9), using a second CNN model with 37 classes. The performance of the suggested system is tested on two datasets which contain images under various conditions, such as poor picture quality, image perspective distortion, bright day, night and complex environment. A great percentage of the results show the accuracy of the suggested system." @default.
- W2785672431 created "2018-02-23" @default.
- W2785672431 creator A5007423749 @default.
- W2785672431 creator A5053613060 @default.
- W2785672431 creator A5064452305 @default.
- W2785672431 date "2017-11-01" @default.
- W2785672431 modified "2023-10-16" @default.
- W2785672431 title "Deep Learning System for Automatic License Plate Detection and Recognition" @default.
- W2785672431 cites W1534935829 @default.
- W2785672431 cites W1975399404 @default.
- W2785672431 cites W1992732951 @default.
- W2785672431 cites W1997245199 @default.
- W2785672431 cites W2003486614 @default.
- W2785672431 cites W2024121930 @default.
- W2785672431 cites W2024582606 @default.
- W2785672431 cites W2030326191 @default.
- W2785672431 cites W2039592808 @default.
- W2785672431 cites W2057175746 @default.
- W2785672431 cites W2071682987 @default.
- W2785672431 cites W2106073265 @default.
- W2785672431 cites W2113417724 @default.
- W2785672431 cites W2120866931 @default.
- W2785672431 cites W2122840423 @default.
- W2785672431 cites W2126297944 @default.
- W2785672431 cites W2140132917 @default.
- W2785672431 cites W2145621224 @default.
- W2785672431 cites W2152366524 @default.
- W2785672431 cites W2165465987 @default.
- W2785672431 cites W2171786422 @default.
- W2785672431 cites W2550229148 @default.
- W2785672431 cites W2575354312 @default.
- W2785672431 cites W2579459456 @default.
- W2785672431 cites W2626394981 @default.
- W2785672431 doi "https://doi.org/10.1109/icdar.2017.187" @default.
- W2785672431 hasPublicationYear "2017" @default.
- W2785672431 type Work @default.
- W2785672431 sameAs 2785672431 @default.
- W2785672431 citedByCount "88" @default.
- W2785672431 countsByYear W27856724312017 @default.
- W2785672431 countsByYear W27856724312018 @default.
- W2785672431 countsByYear W27856724312019 @default.
- W2785672431 countsByYear W27856724312020 @default.
- W2785672431 countsByYear W27856724312021 @default.
- W2785672431 countsByYear W27856724312022 @default.
- W2785672431 countsByYear W27856724312023 @default.
- W2785672431 crossrefType "proceedings-article" @default.
- W2785672431 hasAuthorship W2785672431A5007423749 @default.
- W2785672431 hasAuthorship W2785672431A5053613060 @default.
- W2785672431 hasAuthorship W2785672431A5064452305 @default.
- W2785672431 hasConcept C108583219 @default.
- W2785672431 hasConcept C111919701 @default.
- W2785672431 hasConcept C115961682 @default.
- W2785672431 hasConcept C134306372 @default.
- W2785672431 hasConcept C153180895 @default.
- W2785672431 hasConcept C154945302 @default.
- W2785672431 hasConcept C202444582 @default.
- W2785672431 hasConcept C26517878 @default.
- W2785672431 hasConcept C2776151529 @default.
- W2785672431 hasConcept C2780560020 @default.
- W2785672431 hasConcept C2987247673 @default.
- W2785672431 hasConcept C31972630 @default.
- W2785672431 hasConcept C33923547 @default.
- W2785672431 hasConcept C36503486 @default.
- W2785672431 hasConcept C38652104 @default.
- W2785672431 hasConcept C41008148 @default.
- W2785672431 hasConcept C45347329 @default.
- W2785672431 hasConcept C50644808 @default.
- W2785672431 hasConcept C546480517 @default.
- W2785672431 hasConcept C81363708 @default.
- W2785672431 hasConcept C89600930 @default.
- W2785672431 hasConcept C9417928 @default.
- W2785672431 hasConcept C9652623 @default.
- W2785672431 hasConcept C98045186 @default.
- W2785672431 hasConceptScore W2785672431C108583219 @default.
- W2785672431 hasConceptScore W2785672431C111919701 @default.
- W2785672431 hasConceptScore W2785672431C115961682 @default.
- W2785672431 hasConceptScore W2785672431C134306372 @default.
- W2785672431 hasConceptScore W2785672431C153180895 @default.
- W2785672431 hasConceptScore W2785672431C154945302 @default.
- W2785672431 hasConceptScore W2785672431C202444582 @default.
- W2785672431 hasConceptScore W2785672431C26517878 @default.
- W2785672431 hasConceptScore W2785672431C2776151529 @default.
- W2785672431 hasConceptScore W2785672431C2780560020 @default.
- W2785672431 hasConceptScore W2785672431C2987247673 @default.
- W2785672431 hasConceptScore W2785672431C31972630 @default.
- W2785672431 hasConceptScore W2785672431C33923547 @default.
- W2785672431 hasConceptScore W2785672431C36503486 @default.
- W2785672431 hasConceptScore W2785672431C38652104 @default.
- W2785672431 hasConceptScore W2785672431C41008148 @default.
- W2785672431 hasConceptScore W2785672431C45347329 @default.
- W2785672431 hasConceptScore W2785672431C50644808 @default.
- W2785672431 hasConceptScore W2785672431C546480517 @default.
- W2785672431 hasConceptScore W2785672431C81363708 @default.
- W2785672431 hasConceptScore W2785672431C89600930 @default.
- W2785672431 hasConceptScore W2785672431C9417928 @default.
- W2785672431 hasConceptScore W2785672431C9652623 @default.
- W2785672431 hasConceptScore W2785672431C98045186 @default.
- W2785672431 hasLocation W27856724311 @default.
- W2785672431 hasOpenAccess W2785672431 @default.
- W2785672431 hasPrimaryLocation W27856724311 @default.