Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785693802> ?p ?o ?g. }
- W2785693802 abstract "The classical bag-of-words and probabilistic topic models are widely used on topic classification tasks. Recently, neural networks have achieved remarkable performance and formed the mainstream, due to their ability to encode distributed semantic features of documents based on word embeddings. To demonstrate the superiority of neural networks, this paper compares Latent Dirichlet Allocation (LDA) with Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Recurrent Convolutional Neural Network (RCNN), which are the mainstream neural network architectures. Beyond this, we combine the latent topic information inferred by LDA and distributed semantic information learned by neural networks to generate a better document representation for topic classification. The experimental results show that the proposed representation outperforms individual systems and can achieve excellent performance on topic classification tasks." @default.
- W2785693802 created "2018-02-23" @default.
- W2785693802 creator A5003098301 @default.
- W2785693802 creator A5038369085 @default.
- W2785693802 creator A5039765869 @default.
- W2785693802 creator A5053863846 @default.
- W2785693802 date "2017-12-01" @default.
- W2785693802 modified "2023-09-23" @default.
- W2785693802 title "Topic classification based on distributed document representation and latent topic information" @default.
- W2785693802 cites W1614298861 @default.
- W2785693802 cites W1665214252 @default.
- W2785693802 cites W1832693441 @default.
- W2785693802 cites W1880262756 @default.
- W2785693802 cites W1965398296 @default.
- W2785693802 cites W1978394996 @default.
- W2785693802 cites W2064675550 @default.
- W2785693802 cites W2107878631 @default.
- W2785693802 cites W2110591510 @default.
- W2785693802 cites W2120615054 @default.
- W2785693802 cites W2157331557 @default.
- W2785693802 cites W2250966211 @default.
- W2785693802 cites W2265846598 @default.
- W2785693802 cites W2271840356 @default.
- W2785693802 cites W2284289336 @default.
- W2785693802 cites W2462509432 @default.
- W2785693802 cites W2949547296 @default.
- W2785693802 cites W2964121744 @default.
- W2785693802 cites W2964331270 @default.
- W2785693802 cites W97072897 @default.
- W2785693802 doi "https://doi.org/10.1109/apsipa.2017.8282098" @default.
- W2785693802 hasPublicationYear "2017" @default.
- W2785693802 type Work @default.
- W2785693802 sameAs 2785693802 @default.
- W2785693802 citedByCount "0" @default.
- W2785693802 crossrefType "proceedings-article" @default.
- W2785693802 hasAuthorship W2785693802A5003098301 @default.
- W2785693802 hasAuthorship W2785693802A5038369085 @default.
- W2785693802 hasAuthorship W2785693802A5039765869 @default.
- W2785693802 hasAuthorship W2785693802A5053863846 @default.
- W2785693802 hasConcept C104317684 @default.
- W2785693802 hasConcept C112933361 @default.
- W2785693802 hasConcept C119857082 @default.
- W2785693802 hasConcept C147168706 @default.
- W2785693802 hasConcept C154945302 @default.
- W2785693802 hasConcept C170133592 @default.
- W2785693802 hasConcept C171686336 @default.
- W2785693802 hasConcept C17744445 @default.
- W2785693802 hasConcept C184337299 @default.
- W2785693802 hasConcept C185592680 @default.
- W2785693802 hasConcept C199360897 @default.
- W2785693802 hasConcept C199539241 @default.
- W2785693802 hasConcept C204321447 @default.
- W2785693802 hasConcept C2776359362 @default.
- W2785693802 hasConcept C2780479914 @default.
- W2785693802 hasConcept C41008148 @default.
- W2785693802 hasConcept C49937458 @default.
- W2785693802 hasConcept C500882744 @default.
- W2785693802 hasConcept C50644808 @default.
- W2785693802 hasConcept C55493867 @default.
- W2785693802 hasConcept C66746571 @default.
- W2785693802 hasConcept C81363708 @default.
- W2785693802 hasConcept C94625758 @default.
- W2785693802 hasConceptScore W2785693802C104317684 @default.
- W2785693802 hasConceptScore W2785693802C112933361 @default.
- W2785693802 hasConceptScore W2785693802C119857082 @default.
- W2785693802 hasConceptScore W2785693802C147168706 @default.
- W2785693802 hasConceptScore W2785693802C154945302 @default.
- W2785693802 hasConceptScore W2785693802C170133592 @default.
- W2785693802 hasConceptScore W2785693802C171686336 @default.
- W2785693802 hasConceptScore W2785693802C17744445 @default.
- W2785693802 hasConceptScore W2785693802C184337299 @default.
- W2785693802 hasConceptScore W2785693802C185592680 @default.
- W2785693802 hasConceptScore W2785693802C199360897 @default.
- W2785693802 hasConceptScore W2785693802C199539241 @default.
- W2785693802 hasConceptScore W2785693802C204321447 @default.
- W2785693802 hasConceptScore W2785693802C2776359362 @default.
- W2785693802 hasConceptScore W2785693802C2780479914 @default.
- W2785693802 hasConceptScore W2785693802C41008148 @default.
- W2785693802 hasConceptScore W2785693802C49937458 @default.
- W2785693802 hasConceptScore W2785693802C500882744 @default.
- W2785693802 hasConceptScore W2785693802C50644808 @default.
- W2785693802 hasConceptScore W2785693802C55493867 @default.
- W2785693802 hasConceptScore W2785693802C66746571 @default.
- W2785693802 hasConceptScore W2785693802C81363708 @default.
- W2785693802 hasConceptScore W2785693802C94625758 @default.
- W2785693802 hasLocation W27856938021 @default.
- W2785693802 hasOpenAccess W2785693802 @default.
- W2785693802 hasPrimaryLocation W27856938021 @default.
- W2785693802 hasRelatedWork W2265846598 @default.
- W2785693802 hasRelatedWork W2561300216 @default.
- W2785693802 hasRelatedWork W2606208255 @default.
- W2785693802 hasRelatedWork W2777008050 @default.
- W2785693802 hasRelatedWork W2781548983 @default.
- W2785693802 hasRelatedWork W2781602461 @default.
- W2785693802 hasRelatedWork W2791037205 @default.
- W2785693802 hasRelatedWork W2792924152 @default.
- W2785693802 hasRelatedWork W2810682696 @default.
- W2785693802 hasRelatedWork W2889420213 @default.
- W2785693802 hasRelatedWork W2904077174 @default.
- W2785693802 hasRelatedWork W2924354574 @default.