Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785707614> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2785707614 abstract "This thesis is devoted to the combinatorial and geometric study of certain multiplicities, which we call generalized Littlewood-Richardson coefficients. These are sums of products of single Littlewood-Richardson coefficients, and the specific ones we study describe the branching rules for the direct sum and diagonal embeddings of GL(n) as well as the decompositions of extremal weight crystals of type A+. By representing these multiplicities as dimensions of weight spaces of quiver semi-invariants, we use quiver theory to prove their saturation and describe necessary and sufficient conditions for them to be nonzero, culminating in statements similar to Horn's classical conjecture. We then use these conditions to prove various combinatorial properties, including how these multiplicities can be factored and that these numbers in certain cases satisfy the same conjectures as single Littlewood-Richardson coefficients. Finally, we provide a polytopal description of these multiplicities and prove that their positivity can be computed in strongly polynomial time." @default.
- W2785707614 created "2018-02-23" @default.
- W2785707614 creator A5019522016 @default.
- W2785707614 date "2021-04-14" @default.
- W2785707614 modified "2023-09-27" @default.
- W2785707614 title "Generalized Littlewood-Richardson coefficients for branching rules of GL(n) and extremal weight crystals" @default.
- W2785707614 cites W1553824818 @default.
- W2785707614 cites W1610564136 @default.
- W2785707614 cites W1661622683 @default.
- W2785707614 cites W1664429083 @default.
- W2785707614 cites W178680516 @default.
- W2785707614 cites W1807235826 @default.
- W2785707614 cites W1863071953 @default.
- W2785707614 cites W1935681152 @default.
- W2785707614 cites W1976265326 @default.
- W2785707614 cites W1995509652 @default.
- W2785707614 cites W2000206862 @default.
- W2785707614 cites W2019669853 @default.
- W2785707614 cites W2024063662 @default.
- W2785707614 cites W2032505040 @default.
- W2785707614 cites W2042552555 @default.
- W2785707614 cites W2046034706 @default.
- W2785707614 cites W2059969259 @default.
- W2785707614 cites W2060218519 @default.
- W2785707614 cites W2064674038 @default.
- W2785707614 cites W2074175043 @default.
- W2785707614 cites W2075426242 @default.
- W2785707614 cites W2089420710 @default.
- W2785707614 cites W2092309185 @default.
- W2785707614 cites W2093462194 @default.
- W2785707614 cites W2100440346 @default.
- W2785707614 cites W2100685311 @default.
- W2785707614 cites W2105014941 @default.
- W2785707614 cites W2114668207 @default.
- W2785707614 cites W2115492992 @default.
- W2785707614 cites W2120092158 @default.
- W2785707614 cites W2131077490 @default.
- W2785707614 cites W2167698898 @default.
- W2785707614 cites W2196546749 @default.
- W2785707614 cites W2592548894 @default.
- W2785707614 cites W2795510554 @default.
- W2785707614 cites W2963841142 @default.
- W2785707614 cites W2963907422 @default.
- W2785707614 cites W60916443 @default.
- W2785707614 cites W61863352 @default.
- W2785707614 doi "https://doi.org/10.32469/10355/66149" @default.
- W2785707614 hasPublicationYear "2021" @default.
- W2785707614 type Work @default.
- W2785707614 sameAs 2785707614 @default.
- W2785707614 citedByCount "1" @default.
- W2785707614 countsByYear W27857076142019 @default.
- W2785707614 crossrefType "dissertation" @default.
- W2785707614 hasAuthorship W2785707614A5019522016 @default.
- W2785707614 hasBestOaLocation W27857076141 @default.
- W2785707614 hasConcept C114614502 @default.
- W2785707614 hasConcept C118615104 @default.
- W2785707614 hasConcept C130367717 @default.
- W2785707614 hasConcept C159985019 @default.
- W2785707614 hasConcept C168310172 @default.
- W2785707614 hasConcept C18903297 @default.
- W2785707614 hasConcept C192562407 @default.
- W2785707614 hasConcept C202444582 @default.
- W2785707614 hasConcept C206175624 @default.
- W2785707614 hasConcept C2524010 @default.
- W2785707614 hasConcept C2777299769 @default.
- W2785707614 hasConcept C2780990831 @default.
- W2785707614 hasConcept C33923547 @default.
- W2785707614 hasConcept C86803240 @default.
- W2785707614 hasConceptScore W2785707614C114614502 @default.
- W2785707614 hasConceptScore W2785707614C118615104 @default.
- W2785707614 hasConceptScore W2785707614C130367717 @default.
- W2785707614 hasConceptScore W2785707614C159985019 @default.
- W2785707614 hasConceptScore W2785707614C168310172 @default.
- W2785707614 hasConceptScore W2785707614C18903297 @default.
- W2785707614 hasConceptScore W2785707614C192562407 @default.
- W2785707614 hasConceptScore W2785707614C202444582 @default.
- W2785707614 hasConceptScore W2785707614C206175624 @default.
- W2785707614 hasConceptScore W2785707614C2524010 @default.
- W2785707614 hasConceptScore W2785707614C2777299769 @default.
- W2785707614 hasConceptScore W2785707614C2780990831 @default.
- W2785707614 hasConceptScore W2785707614C33923547 @default.
- W2785707614 hasConceptScore W2785707614C86803240 @default.
- W2785707614 hasLocation W27857076141 @default.
- W2785707614 hasLocation W27857076142 @default.
- W2785707614 hasOpenAccess W2785707614 @default.
- W2785707614 hasPrimaryLocation W27857076141 @default.
- W2785707614 hasRelatedWork W16883125 @default.
- W2785707614 hasRelatedWork W30254118 @default.
- W2785707614 hasRelatedWork W34409509 @default.
- W2785707614 hasRelatedWork W36302007 @default.
- W2785707614 hasRelatedWork W40297131 @default.
- W2785707614 hasRelatedWork W42088560 @default.
- W2785707614 hasRelatedWork W49294950 @default.
- W2785707614 hasRelatedWork W58922320 @default.
- W2785707614 hasRelatedWork W60434056 @default.
- W2785707614 hasRelatedWork W7827340 @default.
- W2785707614 isParatext "false" @default.
- W2785707614 isRetracted "false" @default.
- W2785707614 magId "2785707614" @default.
- W2785707614 workType "dissertation" @default.