Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785752482> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2785752482 abstract "Spatially high-resolution information on the seabed sediment is import for many applications in the fields of oceanic engineering, coastal engineering, habitat mapping, and others. The seabed sediment is typically described by information based on the grain-size distribution, which are derived from sediment samples collected from the seafloor. For covering large areas side-scan sonar systems are typically used, which measure the backscatter intensity. From this information the sediment types can be derived. We propose a model for the automatic sediment type classification of the side-scan sonar data, which is based on convolutional neural networks (CNN). A big advantage of CNN is that they provide an end-to-end training: the CNN derives appropriate features automatically during the training process, which are then used for classification. The approach is based on a patch-wise classification using ensemble voting. The approach is evaluated on real world side-scan sonar data, which have been labelled using four classes (fine, sand, coarse, and mixed sediment) by experts. While the prediction of sand achieves an accuracy of 83 percent, the accuracy for fine sediment is very poor (11 percent)." @default.
- W2785752482 created "2018-02-23" @default.
- W2785752482 creator A5005699473 @default.
- W2785752482 creator A5026252793 @default.
- W2785752482 creator A5038129076 @default.
- W2785752482 creator A5040412734 @default.
- W2785752482 creator A5049910705 @default.
- W2785752482 date "2017-11-01" @default.
- W2785752482 modified "2023-09-23" @default.
- W2785752482 title "Seabed sediment classification of side-scan sonar data using convolutional neural networks" @default.
- W2785752482 cites W1524058612 @default.
- W2785752482 cites W1531251320 @default.
- W2785752482 cites W1570212532 @default.
- W2785752482 cites W1982003131 @default.
- W2785752482 cites W2019438003 @default.
- W2785752482 cites W2076063813 @default.
- W2785752482 cites W2097117768 @default.
- W2785752482 cites W2112796928 @default.
- W2785752482 cites W4238174522 @default.
- W2785752482 doi "https://doi.org/10.1109/ssci.2017.8285220" @default.
- W2785752482 hasPublicationYear "2017" @default.
- W2785752482 type Work @default.
- W2785752482 sameAs 2785752482 @default.
- W2785752482 citedByCount "20" @default.
- W2785752482 countsByYear W27857524822018 @default.
- W2785752482 countsByYear W27857524822019 @default.
- W2785752482 countsByYear W27857524822020 @default.
- W2785752482 countsByYear W27857524822021 @default.
- W2785752482 countsByYear W27857524822022 @default.
- W2785752482 countsByYear W27857524822023 @default.
- W2785752482 crossrefType "proceedings-article" @default.
- W2785752482 hasAuthorship W2785752482A5005699473 @default.
- W2785752482 hasAuthorship W2785752482A5026252793 @default.
- W2785752482 hasAuthorship W2785752482A5038129076 @default.
- W2785752482 hasAuthorship W2785752482A5040412734 @default.
- W2785752482 hasAuthorship W2785752482A5049910705 @default.
- W2785752482 hasConcept C111368507 @default.
- W2785752482 hasConcept C127313418 @default.
- W2785752482 hasConcept C153180895 @default.
- W2785752482 hasConcept C154945302 @default.
- W2785752482 hasConcept C2776355146 @default.
- W2785752482 hasConcept C33613203 @default.
- W2785752482 hasConcept C41008148 @default.
- W2785752482 hasConcept C555745239 @default.
- W2785752482 hasConcept C62649853 @default.
- W2785752482 hasConcept C81363708 @default.
- W2785752482 hasConceptScore W2785752482C111368507 @default.
- W2785752482 hasConceptScore W2785752482C127313418 @default.
- W2785752482 hasConceptScore W2785752482C153180895 @default.
- W2785752482 hasConceptScore W2785752482C154945302 @default.
- W2785752482 hasConceptScore W2785752482C2776355146 @default.
- W2785752482 hasConceptScore W2785752482C33613203 @default.
- W2785752482 hasConceptScore W2785752482C41008148 @default.
- W2785752482 hasConceptScore W2785752482C555745239 @default.
- W2785752482 hasConceptScore W2785752482C62649853 @default.
- W2785752482 hasConceptScore W2785752482C81363708 @default.
- W2785752482 hasLocation W27857524821 @default.
- W2785752482 hasOpenAccess W2785752482 @default.
- W2785752482 hasPrimaryLocation W27857524821 @default.
- W2785752482 hasRelatedWork W1995650313 @default.
- W2785752482 hasRelatedWork W2025522848 @default.
- W2785752482 hasRelatedWork W2135480983 @default.
- W2785752482 hasRelatedWork W2149682114 @default.
- W2785752482 hasRelatedWork W2394025944 @default.
- W2785752482 hasRelatedWork W2415693547 @default.
- W2785752482 hasRelatedWork W2512864725 @default.
- W2785752482 hasRelatedWork W2595114826 @default.
- W2785752482 hasRelatedWork W2781945323 @default.
- W2785752482 hasRelatedWork W2949990039 @default.
- W2785752482 isParatext "false" @default.
- W2785752482 isRetracted "false" @default.
- W2785752482 magId "2785752482" @default.
- W2785752482 workType "article" @default.