Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785752848> ?p ?o ?g. }
- W2785752848 endingPage "4070" @default.
- W2785752848 startingPage "4056" @default.
- W2785752848 abstract "Limb-girdle muscular dystrophy type 2a arises from mutations in the Ca2+-activated intracellular cysteine protease calpain-3. This calpain isoform is abundant in skeletal muscle and differs from the main isoforms, calpain-1 and -2, in being a homodimer and having two short insertion sequences. The first of these, IS1, interrupts the protease core and must be cleaved for activation and substrate binding. Here, to learn how calpain-3 can be regulated and inhibited, we determined the structures of the calpain-3 protease core with IS1 present or proteolytically excised. To prevent intramolecular IS1 autoproteolysis, we converted the active-site Cys to Ala. Small-angle X-ray scattering (SAXS) analysis of the C129A mutant suggested that IS1 is disordered and mobile enough to occupy several locations. Surprisingly, this was also true for the apo version of this mutant. We therefore concluded that IS1 might have a binding partner in the sarcomere and is unstructured in its absence. After autoproteolytic IS1 removal from the active Cys129 calpain-3 protease core, we could solve its crystal structures with and without the cysteine protease inhibitors E-64 and leupeptin covalently bound to the active-site cysteine. In each structure, the active state of the protease core was assembled by the cooperative binding of two Ca2+ ions to the equivalent sites used in calpain-1 and -2. These structures of the calpain-3 active site with residual IS1 and with bound E-64 and leupeptin may help guide the design of calpain-3–specific inhibitors. Limb-girdle muscular dystrophy type 2a arises from mutations in the Ca2+-activated intracellular cysteine protease calpain-3. This calpain isoform is abundant in skeletal muscle and differs from the main isoforms, calpain-1 and -2, in being a homodimer and having two short insertion sequences. The first of these, IS1, interrupts the protease core and must be cleaved for activation and substrate binding. Here, to learn how calpain-3 can be regulated and inhibited, we determined the structures of the calpain-3 protease core with IS1 present or proteolytically excised. To prevent intramolecular IS1 autoproteolysis, we converted the active-site Cys to Ala. Small-angle X-ray scattering (SAXS) analysis of the C129A mutant suggested that IS1 is disordered and mobile enough to occupy several locations. Surprisingly, this was also true for the apo version of this mutant. We therefore concluded that IS1 might have a binding partner in the sarcomere and is unstructured in its absence. After autoproteolytic IS1 removal from the active Cys129 calpain-3 protease core, we could solve its crystal structures with and without the cysteine protease inhibitors E-64 and leupeptin covalently bound to the active-site cysteine. In each structure, the active state of the protease core was assembled by the cooperative binding of two Ca2+ ions to the equivalent sites used in calpain-1 and -2. These structures of the calpain-3 active site with residual IS1 and with bound E-64 and leupeptin may help guide the design of calpain-3–specific inhibitors." @default.
- W2785752848 created "2018-02-23" @default.
- W2785752848 creator A5035023245 @default.
- W2785752848 creator A5049581351 @default.
- W2785752848 creator A5055689189 @default.
- W2785752848 date "2018-03-01" @default.
- W2785752848 modified "2023-10-17" @default.
- W2785752848 title "Structures of human calpain-3 protease core with and without bound inhibitor reveal mechanisms of calpain activation" @default.
- W2785752848 cites W1540831369 @default.
- W2785752848 cites W1639940444 @default.
- W2785752848 cites W1818565127 @default.
- W2785752848 cites W1863930712 @default.
- W2785752848 cites W1925868689 @default.
- W2785752848 cites W1967791344 @default.
- W2785752848 cites W1969781490 @default.
- W2785752848 cites W1977038370 @default.
- W2785752848 cites W1980646317 @default.
- W2785752848 cites W1981038797 @default.
- W2785752848 cites W1981346588 @default.
- W2785752848 cites W1985731867 @default.
- W2785752848 cites W1997151018 @default.
- W2785752848 cites W1997449658 @default.
- W2785752848 cites W2004174813 @default.
- W2785752848 cites W2004377868 @default.
- W2785752848 cites W2007047797 @default.
- W2785752848 cites W2011924601 @default.
- W2785752848 cites W2013622558 @default.
- W2785752848 cites W2013843427 @default.
- W2785752848 cites W2016170088 @default.
- W2785752848 cites W2017492488 @default.
- W2785752848 cites W2024993897 @default.
- W2785752848 cites W2029955024 @default.
- W2785752848 cites W2032652036 @default.
- W2785752848 cites W2040698692 @default.
- W2785752848 cites W2047214756 @default.
- W2785752848 cites W2048146889 @default.
- W2785752848 cites W2050091361 @default.
- W2785752848 cites W2055782143 @default.
- W2785752848 cites W2061294083 @default.
- W2785752848 cites W2061506539 @default.
- W2785752848 cites W2066088601 @default.
- W2785752848 cites W2072674961 @default.
- W2785752848 cites W2092115901 @default.
- W2785752848 cites W2100143162 @default.
- W2785752848 cites W2102008951 @default.
- W2785752848 cites W2108921801 @default.
- W2785752848 cites W2114565992 @default.
- W2785752848 cites W2124026197 @default.
- W2785752848 cites W2131499490 @default.
- W2785752848 cites W2142520482 @default.
- W2785752848 cites W2142529984 @default.
- W2785752848 cites W2144081223 @default.
- W2785752848 cites W2148220372 @default.
- W2785752848 cites W2159211495 @default.
- W2785752848 cites W2161409269 @default.
- W2785752848 cites W2162980545 @default.
- W2785752848 cites W2163341755 @default.
- W2785752848 cites W2164571708 @default.
- W2785752848 cites W2180229411 @default.
- W2785752848 cites W2270020113 @default.
- W2785752848 cites W2550827765 @default.
- W2785752848 cites W4248872320 @default.
- W2785752848 doi "https://doi.org/10.1074/jbc.ra117.001097" @default.
- W2785752848 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5857979" @default.
- W2785752848 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29382717" @default.
- W2785752848 hasPublicationYear "2018" @default.
- W2785752848 type Work @default.
- W2785752848 sameAs 2785752848 @default.
- W2785752848 citedByCount "26" @default.
- W2785752848 countsByYear W27857528482018 @default.
- W2785752848 countsByYear W27857528482019 @default.
- W2785752848 countsByYear W27857528482020 @default.
- W2785752848 countsByYear W27857528482021 @default.
- W2785752848 countsByYear W27857528482022 @default.
- W2785752848 countsByYear W27857528482023 @default.
- W2785752848 crossrefType "journal-article" @default.
- W2785752848 hasAuthorship W2785752848A5035023245 @default.
- W2785752848 hasAuthorship W2785752848A5049581351 @default.
- W2785752848 hasAuthorship W2785752848A5055689189 @default.
- W2785752848 hasBestOaLocation W27857528481 @default.
- W2785752848 hasConcept C104317684 @default.
- W2785752848 hasConcept C12554922 @default.
- W2785752848 hasConcept C143065580 @default.
- W2785752848 hasConcept C181199279 @default.
- W2785752848 hasConcept C182220744 @default.
- W2785752848 hasConcept C185592680 @default.
- W2785752848 hasConcept C2775883766 @default.
- W2785752848 hasConcept C2776714187 @default.
- W2785752848 hasConcept C2777283782 @default.
- W2785752848 hasConcept C2779030066 @default.
- W2785752848 hasConcept C41183919 @default.
- W2785752848 hasConcept C54355233 @default.
- W2785752848 hasConcept C55493867 @default.
- W2785752848 hasConcept C56928146 @default.
- W2785752848 hasConcept C86803240 @default.
- W2785752848 hasConceptScore W2785752848C104317684 @default.
- W2785752848 hasConceptScore W2785752848C12554922 @default.
- W2785752848 hasConceptScore W2785752848C143065580 @default.