Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785755110> ?p ?o ?g. }
- W2785755110 endingPage "639.e4" @default.
- W2785755110 startingPage "630" @default.
- W2785755110 abstract "The circadian clock drives daily rhythms of many plant physiological responses, providing a competitive advantage that improves plant fitness and survival rates [1Bendix C. Marshall C.M. Harmon F.G. Circadian clock genes universally control key agricultural traits.Mol. Plant. 2015; 8: 1135-1152Abstract Full Text Full Text PDF PubMed Scopus (133) Google Scholar, 2Dodd A.N. Salathia N. Hall A. Kévei E. Tóth R. Nagy F. Hibberd J.M. Millar A.J. Webb A.A. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.Science. 2005; 309: 630-633Crossref PubMed Scopus (1061) Google Scholar, 3Green R.M. Tingay S. Wang Z.Y. Tobin E.M. Circadian rhythms confer a higher level of fitness to Arabidopsis plants.Plant Physiol. 2002; 129: 576-584Crossref PubMed Scopus (285) Google Scholar, 4Greenham K. McClung C.R. Integrating circadian dynamics with physiological processes in plants.Nat. Rev. Genet. 2015; 16: 598-610Crossref PubMed Scopus (292) Google Scholar, 5Sanchez S.E. Kay S.A. The plant circadian clock: from a simple timekeeper to a complex developmental manager.Cold Spring Harb. Perspect. Biol. 2016; 8: a027748Crossref PubMed Scopus (125) Google Scholar]. Whereas multiple environmental cues are predicted to regulate the plant clock function, most studies focused on understanding the effects of light and temperature [5Sanchez S.E. Kay S.A. The plant circadian clock: from a simple timekeeper to a complex developmental manager.Cold Spring Harb. Perspect. Biol. 2016; 8: a027748Crossref PubMed Scopus (125) Google Scholar, 6Hsu P.Y. Harmer S.L. Wheels within wheels: the plant circadian system.Trends Plant Sci. 2014; 19: 240-249Abstract Full Text Full Text PDF PubMed Scopus (240) Google Scholar, 7Nohales M.A. Kay S.A. Molecular mechanisms at the core of the plant circadian oscillator.Nat. Struct. Mol. Biol. 2016; 23: 1061-1069Crossref PubMed Scopus (156) Google Scholar, 8Pruneda-Paz J.L. Kay S.A. An expanding universe of circadian networks in higher plants.Trends Plant Sci. 2010; 15: 259-265Abstract Full Text Full Text PDF PubMed Scopus (153) Google Scholar]. Increasing evidence indicates a significant role of plant-pathogen interactions on clock regulation [9Zhang C. Xie Q. Anderson R.G. Ng G. Seitz N.C. Peterson T. McClung C.R. McDowell J.M. Kong D. Kwak J.M. Lu H. Crosstalk between the circadian clock and innate immunity in Arabidopsis.PLoS Pathog. 2013; 9: e1003370Crossref PubMed Scopus (130) Google Scholar, 10Zhou M. Wang W. Karapetyan S. Mwimba M. Marqués J. Buchler N.E. Dong X. Redox rhythm reinforces the circadian clock to gate immune response.Nature. 2015; 523: 472-476Crossref PubMed Scopus (128) Google Scholar], but the underlying mechanisms remain elusive. In Arabidopsis, the clock function largely relies on a transcriptional feedback loop between morning (CCA1 and LHY)- and evening (TOC1)-expressed transcription factors [6Hsu P.Y. Harmer S.L. Wheels within wheels: the plant circadian system.Trends Plant Sci. 2014; 19: 240-249Abstract Full Text Full Text PDF PubMed Scopus (240) Google Scholar, 7Nohales M.A. Kay S.A. Molecular mechanisms at the core of the plant circadian oscillator.Nat. Struct. Mol. Biol. 2016; 23: 1061-1069Crossref PubMed Scopus (156) Google Scholar, 8Pruneda-Paz J.L. Kay S.A. An expanding universe of circadian networks in higher plants.Trends Plant Sci. 2010; 15: 259-265Abstract Full Text Full Text PDF PubMed Scopus (153) Google Scholar]. Here, we focused on these core components to investigate the Arabidopsis clock regulation using a unique biotic stress approach. We found that a single-leaf Pseudomonas syringae infection systemically lengthened the period and reduced the amplitude of circadian rhythms in distal uninfected tissues. Remarkably, the low-amplitude phenotype observed upon infection was recapitulated by a transient treatment with the defense-related phytohormone salicylic acid (SA), which also triggered a significant clock phase delay. Strikingly, despite SA-modulated circadian rhythms, we revealed that the master regulator of SA signaling, NPR1 [11Dong X. NPR1, all things considered.Curr. Opin. Plant Biol. 2004; 7: 547-552Crossref PubMed Scopus (569) Google Scholar, 12Wang D. Amornsiripanitch N. Dong X. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants.PLoS Pathog. 2006; 2: e123Crossref PubMed Scopus (540) Google Scholar], antagonized clock responses triggered by both SA treatment and P. syringae. In contrast, we uncovered that the NADPH oxidase RBOHD [13Kalachova T. Iakovenko O. Kretinin S. Kravets V. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade.Plant Physiol. Biochem. 2013; 66: 127-133Crossref PubMed Scopus (46) Google Scholar] largely mediated the aforementioned clock responses after either SA treatment or the bacterial infection. Altogether, we demonstrated novel and unexpected roles for SA, NPR1, and redox signaling in clock regulation by P. syringae and revealed a previously unrecognized layer of systemic clock regulation by locally perceived environmental cues." @default.
- W2785755110 created "2018-02-23" @default.
- W2785755110 creator A5010990104 @default.
- W2785755110 creator A5033883138 @default.
- W2785755110 creator A5068114169 @default.
- W2785755110 creator A5073545871 @default.
- W2785755110 date "2018-02-01" @default.
- W2785755110 modified "2023-10-16" @default.
- W2785755110 title "A Localized Pseudomonas syringae Infection Triggers Systemic Clock Responses in Arabidopsis" @default.
- W2785755110 cites W1488702280 @default.
- W2785755110 cites W1566910412 @default.
- W2785755110 cites W1643314579 @default.
- W2785755110 cites W1993480266 @default.
- W2785755110 cites W2000466868 @default.
- W2785755110 cites W2005837518 @default.
- W2785755110 cites W2006446257 @default.
- W2785755110 cites W2012597120 @default.
- W2785755110 cites W2019890127 @default.
- W2785755110 cites W2021814871 @default.
- W2785755110 cites W2023183725 @default.
- W2785755110 cites W2024952216 @default.
- W2785755110 cites W2032772167 @default.
- W2785755110 cites W2035563750 @default.
- W2785755110 cites W2058651702 @default.
- W2785755110 cites W2065002139 @default.
- W2785755110 cites W2086068316 @default.
- W2785755110 cites W2089146709 @default.
- W2785755110 cites W2089163318 @default.
- W2785755110 cites W2093931964 @default.
- W2785755110 cites W2097961562 @default.
- W2785755110 cites W2104266531 @default.
- W2785755110 cites W2112312822 @default.
- W2785755110 cites W2113878162 @default.
- W2785755110 cites W2114570899 @default.
- W2785755110 cites W2117898023 @default.
- W2785755110 cites W2136431988 @default.
- W2785755110 cites W2137007437 @default.
- W2785755110 cites W2138693996 @default.
- W2785755110 cites W2139606027 @default.
- W2785755110 cites W2143014195 @default.
- W2785755110 cites W2147321004 @default.
- W2785755110 cites W2149912063 @default.
- W2785755110 cites W2158367220 @default.
- W2785755110 cites W2162840029 @default.
- W2785755110 cites W2163448850 @default.
- W2785755110 cites W2190321267 @default.
- W2785755110 cites W2211341584 @default.
- W2785755110 cites W2235512896 @default.
- W2785755110 cites W2294508081 @default.
- W2785755110 cites W2520227418 @default.
- W2785755110 cites W2523226413 @default.
- W2785755110 cites W2560103834 @default.
- W2785755110 cites W4240574505 @default.
- W2785755110 doi "https://doi.org/10.1016/j.cub.2018.01.001" @default.
- W2785755110 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5820129" @default.
- W2785755110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29398214" @default.
- W2785755110 hasPublicationYear "2018" @default.
- W2785755110 type Work @default.
- W2785755110 sameAs 2785755110 @default.
- W2785755110 citedByCount "30" @default.
- W2785755110 countsByYear W27857551102018 @default.
- W2785755110 countsByYear W27857551102019 @default.
- W2785755110 countsByYear W27857551102020 @default.
- W2785755110 countsByYear W27857551102021 @default.
- W2785755110 countsByYear W27857551102022 @default.
- W2785755110 countsByYear W27857551102023 @default.
- W2785755110 crossrefType "journal-article" @default.
- W2785755110 hasAuthorship W2785755110A5010990104 @default.
- W2785755110 hasAuthorship W2785755110A5033883138 @default.
- W2785755110 hasAuthorship W2785755110A5068114169 @default.
- W2785755110 hasAuthorship W2785755110A5073545871 @default.
- W2785755110 hasBestOaLocation W27857551101 @default.
- W2785755110 hasConcept C104317684 @default.
- W2785755110 hasConcept C121446783 @default.
- W2785755110 hasConcept C143065580 @default.
- W2785755110 hasConcept C169760540 @default.
- W2785755110 hasConcept C2779473830 @default.
- W2785755110 hasConcept C2779491563 @default.
- W2785755110 hasConcept C38606739 @default.
- W2785755110 hasConcept C54355233 @default.
- W2785755110 hasConcept C55493867 @default.
- W2785755110 hasConcept C83867959 @default.
- W2785755110 hasConcept C86803240 @default.
- W2785755110 hasConceptScore W2785755110C104317684 @default.
- W2785755110 hasConceptScore W2785755110C121446783 @default.
- W2785755110 hasConceptScore W2785755110C143065580 @default.
- W2785755110 hasConceptScore W2785755110C169760540 @default.
- W2785755110 hasConceptScore W2785755110C2779473830 @default.
- W2785755110 hasConceptScore W2785755110C2779491563 @default.
- W2785755110 hasConceptScore W2785755110C38606739 @default.
- W2785755110 hasConceptScore W2785755110C54355233 @default.
- W2785755110 hasConceptScore W2785755110C55493867 @default.
- W2785755110 hasConceptScore W2785755110C83867959 @default.
- W2785755110 hasConceptScore W2785755110C86803240 @default.
- W2785755110 hasFunder F4320311968 @default.
- W2785755110 hasFunder F4320337354 @default.
- W2785755110 hasIssue "4" @default.
- W2785755110 hasLocation W27857551101 @default.