Matches in SemOpenAlex for { <https://semopenalex.org/work/W2785991061> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2785991061 abstract "Cognitive load classification has seen a boost in popularity lately among the speech analysis community. A number of handmade feature based methods and purely machine learning based methods were presented in the last few years, all trained on a small number of established datasets. This paper presents results of several machine learning methods used on an original dataset of voice samples from a preliminary pilot study into effects of cognitive load. Basic arithmetic problems were presented to the participants with instructions to answer them verbally. Acoustic voice features were extracted from the recorded utterances and modelled using methods like Support Vector Machines and Neural Networks. The accuracies of classification are presented over several conditions for a binary classification task (low cognitive load vs. high cognitive load). The viability of the basic arithmetic task as a dataset for cognitive load classification is discussed. Lessons learned during the analysis are also discussed and present a basis for a stronger experiment design using basic arithmetic tasks in the future." @default.
- W2785991061 created "2018-02-23" @default.
- W2785991061 creator A5023881064 @default.
- W2785991061 creator A5040280228 @default.
- W2785991061 creator A5083736826 @default.
- W2785991061 date "2017-09-01" @default.
- W2785991061 modified "2023-09-26" @default.
- W2785991061 title "Classification of cognitive load using voice features: A preliminary investigation" @default.
- W2785991061 cites W1971415293 @default.
- W2785991061 cites W1980470247 @default.
- W2785991061 cites W1980848027 @default.
- W2785991061 cites W1980877068 @default.
- W2785991061 cites W2004599511 @default.
- W2785991061 cites W2034355442 @default.
- W2785991061 cites W2043745365 @default.
- W2785991061 cites W2045014868 @default.
- W2785991061 cites W2067823499 @default.
- W2785991061 cites W2090777335 @default.
- W2785991061 cites W2116669434 @default.
- W2785991061 cites W2127544007 @default.
- W2785991061 cites W2132524366 @default.
- W2785991061 cites W2143669674 @default.
- W2785991061 cites W2239141610 @default.
- W2785991061 cites W2568174962 @default.
- W2785991061 cites W2568527634 @default.
- W2785991061 cites W2569898400 @default.
- W2785991061 doi "https://doi.org/10.1109/coginfocom.2017.8268268" @default.
- W2785991061 hasPublicationYear "2017" @default.
- W2785991061 type Work @default.
- W2785991061 sameAs 2785991061 @default.
- W2785991061 citedByCount "3" @default.
- W2785991061 countsByYear W27859910612021 @default.
- W2785991061 countsByYear W27859910612023 @default.
- W2785991061 crossrefType "proceedings-article" @default.
- W2785991061 hasAuthorship W2785991061A5023881064 @default.
- W2785991061 hasAuthorship W2785991061A5040280228 @default.
- W2785991061 hasAuthorship W2785991061A5083736826 @default.
- W2785991061 hasConcept C119857082 @default.
- W2785991061 hasConcept C12267149 @default.
- W2785991061 hasConcept C127413603 @default.
- W2785991061 hasConcept C138885662 @default.
- W2785991061 hasConcept C154945302 @default.
- W2785991061 hasConcept C15744967 @default.
- W2785991061 hasConcept C169760540 @default.
- W2785991061 hasConcept C169900460 @default.
- W2785991061 hasConcept C201995342 @default.
- W2785991061 hasConcept C204321447 @default.
- W2785991061 hasConcept C2776401178 @default.
- W2785991061 hasConcept C2780451532 @default.
- W2785991061 hasConcept C28490314 @default.
- W2785991061 hasConcept C41008148 @default.
- W2785991061 hasConcept C41895202 @default.
- W2785991061 hasConcept C50644808 @default.
- W2785991061 hasConcept C61641136 @default.
- W2785991061 hasConcept C66905080 @default.
- W2785991061 hasConceptScore W2785991061C119857082 @default.
- W2785991061 hasConceptScore W2785991061C12267149 @default.
- W2785991061 hasConceptScore W2785991061C127413603 @default.
- W2785991061 hasConceptScore W2785991061C138885662 @default.
- W2785991061 hasConceptScore W2785991061C154945302 @default.
- W2785991061 hasConceptScore W2785991061C15744967 @default.
- W2785991061 hasConceptScore W2785991061C169760540 @default.
- W2785991061 hasConceptScore W2785991061C169900460 @default.
- W2785991061 hasConceptScore W2785991061C201995342 @default.
- W2785991061 hasConceptScore W2785991061C204321447 @default.
- W2785991061 hasConceptScore W2785991061C2776401178 @default.
- W2785991061 hasConceptScore W2785991061C2780451532 @default.
- W2785991061 hasConceptScore W2785991061C28490314 @default.
- W2785991061 hasConceptScore W2785991061C41008148 @default.
- W2785991061 hasConceptScore W2785991061C41895202 @default.
- W2785991061 hasConceptScore W2785991061C50644808 @default.
- W2785991061 hasConceptScore W2785991061C61641136 @default.
- W2785991061 hasConceptScore W2785991061C66905080 @default.
- W2785991061 hasLocation W27859910611 @default.
- W2785991061 hasOpenAccess W2785991061 @default.
- W2785991061 hasPrimaryLocation W27859910611 @default.
- W2785991061 hasRelatedWork W1996541855 @default.
- W2785991061 hasRelatedWork W2081647779 @default.
- W2785991061 hasRelatedWork W2101819884 @default.
- W2785991061 hasRelatedWork W2937631562 @default.
- W2785991061 hasRelatedWork W3004897296 @default.
- W2785991061 hasRelatedWork W3194539120 @default.
- W2785991061 hasRelatedWork W3195168932 @default.
- W2785991061 hasRelatedWork W4285106639 @default.
- W2785991061 hasRelatedWork W4361795583 @default.
- W2785991061 hasRelatedWork W4362499384 @default.
- W2785991061 isParatext "false" @default.
- W2785991061 isRetracted "false" @default.
- W2785991061 magId "2785991061" @default.
- W2785991061 workType "article" @default.