Matches in SemOpenAlex for { <https://semopenalex.org/work/W2786182213> ?p ?o ?g. }
- W2786182213 abstract "The space of invariant affine connections on every $3$-Sasakian homogeneous manifold of dimension at least $7$ is described. In particular, the remarkable subspaces of invariant affine metric connections, and the subclass with skew-torsion, are also determined. To this aim, an explicit construction of all $3$-Sasakian homogeneous manifolds is exhibited. The unique $3$-Sasakian homogeneous manifolds which admit nontrivial Einstein with skew-torsion invariant affine connections are those of dimension $7$, that is, $mathbb{S}^7=mathrm{Sp} (2)/ mathrm{Sp(1)}$, $mathbb{R} P^7=mathrm{Sp}(2)/ mathrm{Sp(1)}times mathbb{Z}_{2}$ and the Aloff-Wallach space $mathfrak{W}^{7}_{1,1}= mathrm{SU}(3)/ mathrm{U}(1)$. For $mathbb{S}^7$ and $mathbb{R} P^7$, the set of such connections is in one to one correspondence with two copies of the conformal linear transformation group of the Euclidean space, while it is strictly bigger for $mathfrak{W}^{7}_{1,1}$. In addition, the set of invariant connections with totally skew-symmetric torsion whose Ricci tensor is multiple of the metric, with different factors, on the canonical vertical and horizontal distributions, is fully described on every $3$-Sasakian homogeneous manifold. An affine connection satisfying these conditions is distinguished, characterized by parallelizing all the characteristic vector fields associated to the $3$-Sasakian structure. This connection is Einstein with skew-torsion for the $7$-dimensional examples. Several results have also been adapted to the nonnecessarily homogeneous setting. In this case, the above mentioned sets of affine connections are, in general, only proper subsets satisfying the properties." @default.
- W2786182213 created "2018-02-23" @default.
- W2786182213 creator A5027519545 @default.
- W2786182213 creator A5073284208 @default.
- W2786182213 creator A5085231738 @default.
- W2786182213 date "2018-01-31" @default.
- W2786182213 modified "2023-10-01" @default.
- W2786182213 title "Affine Connections on 3-Sasakian Homogeneous Manifolds" @default.
- W2786182213 cites W1565930783 @default.
- W2786182213 cites W1572143211 @default.
- W2786182213 cites W1642629289 @default.
- W2786182213 cites W1733723063 @default.
- W2786182213 cites W1866232018 @default.
- W2786182213 cites W1975289811 @default.
- W2786182213 cites W1978639364 @default.
- W2786182213 cites W2010184661 @default.
- W2786182213 cites W2015768929 @default.
- W2786182213 cites W2019905535 @default.
- W2786182213 cites W2022536637 @default.
- W2786182213 cites W2056872506 @default.
- W2786182213 cites W2064091418 @default.
- W2786182213 cites W2071518872 @default.
- W2786182213 cites W2076919999 @default.
- W2786182213 cites W2122475722 @default.
- W2786182213 cites W2132028211 @default.
- W2786182213 cites W2139460271 @default.
- W2786182213 cites W2149890214 @default.
- W2786182213 cites W2162725890 @default.
- W2786182213 cites W2320438804 @default.
- W2786182213 cites W2504167881 @default.
- W2786182213 cites W2569559653 @default.
- W2786182213 cites W2757763647 @default.
- W2786182213 cites W2809956034 @default.
- W2786182213 cites W2962876248 @default.
- W2786182213 cites W2963797806 @default.
- W2786182213 cites W3099764824 @default.
- W2786182213 cites W3103573723 @default.
- W2786182213 cites W32012503 @default.
- W2786182213 cites W7626021 @default.
- W2786182213 hasPublicationYear "2018" @default.
- W2786182213 type Work @default.
- W2786182213 sameAs 2786182213 @default.
- W2786182213 citedByCount "4" @default.
- W2786182213 countsByYear W27861822132019 @default.
- W2786182213 countsByYear W27861822132021 @default.
- W2786182213 crossrefType "posted-content" @default.
- W2786182213 hasAuthorship W2786182213A5027519545 @default.
- W2786182213 hasAuthorship W2786182213A5073284208 @default.
- W2786182213 hasAuthorship W2786182213A5085231738 @default.
- W2786182213 hasConcept C105561566 @default.
- W2786182213 hasConcept C114614502 @default.
- W2786182213 hasConcept C121332964 @default.
- W2786182213 hasConcept C127413603 @default.
- W2786182213 hasConcept C13355873 @default.
- W2786182213 hasConcept C141071460 @default.
- W2786182213 hasConcept C158693339 @default.
- W2786182213 hasConcept C190470478 @default.
- W2786182213 hasConcept C202444582 @default.
- W2786182213 hasConcept C2524010 @default.
- W2786182213 hasConcept C32518243 @default.
- W2786182213 hasConcept C33923547 @default.
- W2786182213 hasConcept C37914503 @default.
- W2786182213 hasConcept C41106240 @default.
- W2786182213 hasConcept C529865628 @default.
- W2786182213 hasConcept C54848796 @default.
- W2786182213 hasConcept C62520636 @default.
- W2786182213 hasConcept C66882249 @default.
- W2786182213 hasConcept C69044650 @default.
- W2786182213 hasConcept C71924100 @default.
- W2786182213 hasConcept C77461463 @default.
- W2786182213 hasConcept C78519656 @default.
- W2786182213 hasConcept C92757383 @default.
- W2786182213 hasConceptScore W2786182213C105561566 @default.
- W2786182213 hasConceptScore W2786182213C114614502 @default.
- W2786182213 hasConceptScore W2786182213C121332964 @default.
- W2786182213 hasConceptScore W2786182213C127413603 @default.
- W2786182213 hasConceptScore W2786182213C13355873 @default.
- W2786182213 hasConceptScore W2786182213C141071460 @default.
- W2786182213 hasConceptScore W2786182213C158693339 @default.
- W2786182213 hasConceptScore W2786182213C190470478 @default.
- W2786182213 hasConceptScore W2786182213C202444582 @default.
- W2786182213 hasConceptScore W2786182213C2524010 @default.
- W2786182213 hasConceptScore W2786182213C32518243 @default.
- W2786182213 hasConceptScore W2786182213C33923547 @default.
- W2786182213 hasConceptScore W2786182213C37914503 @default.
- W2786182213 hasConceptScore W2786182213C41106240 @default.
- W2786182213 hasConceptScore W2786182213C529865628 @default.
- W2786182213 hasConceptScore W2786182213C54848796 @default.
- W2786182213 hasConceptScore W2786182213C62520636 @default.
- W2786182213 hasConceptScore W2786182213C66882249 @default.
- W2786182213 hasConceptScore W2786182213C69044650 @default.
- W2786182213 hasConceptScore W2786182213C71924100 @default.
- W2786182213 hasConceptScore W2786182213C77461463 @default.
- W2786182213 hasConceptScore W2786182213C78519656 @default.
- W2786182213 hasConceptScore W2786182213C92757383 @default.
- W2786182213 hasLocation W27861822131 @default.
- W2786182213 hasOpenAccess W2786182213 @default.
- W2786182213 hasPrimaryLocation W27861822131 @default.
- W2786182213 hasRelatedWork W1483382156 @default.
- W2786182213 hasRelatedWork W1776023153 @default.