Matches in SemOpenAlex for { <https://semopenalex.org/work/W2786257066> ?p ?o ?g. }
- W2786257066 abstract "Feature missing is a serious problem in many applications, which may lead to low quality of training data and further significantly degrade the learning performance. While feature acquisition usually involves special devices or complex process, it is expensive to acquire all feature values for the whole dataset. On the other hand, features may be correlated with each other, and some values may be recovered from the others. It is thus important to decide which features are most informative for recovering the other features as well as improving the learning performance. In this paper, we try to train an effective classification model with least acquisition cost by jointly performing active feature querying and supervised matrix completion. When completing the feature matrix, a novel target function is proposed to simultaneously minimize the reconstruction error on observed entries and the supervised loss on training data. When querying the feature value, the most uncertain entry is actively selected based on the variance of previous iterations. In addition, a bi-objective optimization method is presented for cost-aware active selection when features bear different acquisition costs. The effectiveness of the proposed approach is well validated by both theoretical analysis and experimental study." @default.
- W2786257066 created "2018-02-23" @default.
- W2786257066 creator A5007098537 @default.
- W2786257066 creator A5016620131 @default.
- W2786257066 creator A5029012645 @default.
- W2786257066 creator A5072744508 @default.
- W2786257066 creator A5079149569 @default.
- W2786257066 creator A5085720255 @default.
- W2786257066 date "2018-02-14" @default.
- W2786257066 modified "2023-09-23" @default.
- W2786257066 title "Active Feature Acquisition with Supervised Matrix Completion" @default.
- W2786257066 cites W107306860 @default.
- W2786257066 cites W1483816357 @default.
- W2786257066 cites W1514940655 @default.
- W2786257066 cites W1528361845 @default.
- W2786257066 cites W1546851689 @default.
- W2786257066 cites W1604604340 @default.
- W2786257066 cites W1933173902 @default.
- W2786257066 cites W1976618413 @default.
- W2786257066 cites W1980061733 @default.
- W2786257066 cites W1989344766 @default.
- W2786257066 cites W2002878563 @default.
- W2786257066 cites W2016342346 @default.
- W2786257066 cites W2016723762 @default.
- W2786257066 cites W2031327377 @default.
- W2786257066 cites W2037984690 @default.
- W2786257066 cites W2045610202 @default.
- W2786257066 cites W2060204507 @default.
- W2786257066 cites W2103972604 @default.
- W2786257066 cites W2106005123 @default.
- W2786257066 cites W2111297856 @default.
- W2786257066 cites W2115986610 @default.
- W2786257066 cites W2118425803 @default.
- W2786257066 cites W2120387782 @default.
- W2786257066 cites W2132791967 @default.
- W2786257066 cites W2137507956 @default.
- W2786257066 cites W2148924034 @default.
- W2786257066 cites W2153066468 @default.
- W2786257066 cites W2160569988 @default.
- W2786257066 cites W2167758305 @default.
- W2786257066 cites W2187602868 @default.
- W2786257066 cites W2339666411 @default.
- W2786257066 cites W2402922075 @default.
- W2786257066 cites W2404232502 @default.
- W2786257066 cites W2426031434 @default.
- W2786257066 cites W2521186049 @default.
- W2786257066 cites W2611328865 @default.
- W2786257066 cites W2613142296 @default.
- W2786257066 cites W2623107984 @default.
- W2786257066 cites W2626103914 @default.
- W2786257066 cites W2626613554 @default.
- W2786257066 cites W2914331073 @default.
- W2786257066 cites W2949071206 @default.
- W2786257066 cites W2952509110 @default.
- W2786257066 cites W2963823663 @default.
- W2786257066 cites W42684253 @default.
- W2786257066 cites W2144730813 @default.
- W2786257066 doi "https://doi.org/10.48550/arxiv.1802.05380" @default.
- W2786257066 hasPublicationYear "2018" @default.
- W2786257066 type Work @default.
- W2786257066 sameAs 2786257066 @default.
- W2786257066 citedByCount "3" @default.
- W2786257066 countsByYear W27862570662019 @default.
- W2786257066 countsByYear W27862570662020 @default.
- W2786257066 crossrefType "posted-content" @default.
- W2786257066 hasAuthorship W2786257066A5007098537 @default.
- W2786257066 hasAuthorship W2786257066A5016620131 @default.
- W2786257066 hasAuthorship W2786257066A5029012645 @default.
- W2786257066 hasAuthorship W2786257066A5072744508 @default.
- W2786257066 hasAuthorship W2786257066A5079149569 @default.
- W2786257066 hasAuthorship W2786257066A5085720255 @default.
- W2786257066 hasBestOaLocation W27862570661 @default.
- W2786257066 hasConcept C111919701 @default.
- W2786257066 hasConcept C119857082 @default.
- W2786257066 hasConcept C121332964 @default.
- W2786257066 hasConcept C121955636 @default.
- W2786257066 hasConcept C124101348 @default.
- W2786257066 hasConcept C136389625 @default.
- W2786257066 hasConcept C138885662 @default.
- W2786257066 hasConcept C14036430 @default.
- W2786257066 hasConcept C144133560 @default.
- W2786257066 hasConcept C148483581 @default.
- W2786257066 hasConcept C153180895 @default.
- W2786257066 hasConcept C154945302 @default.
- W2786257066 hasConcept C163716315 @default.
- W2786257066 hasConcept C196083921 @default.
- W2786257066 hasConcept C2776401178 @default.
- W2786257066 hasConcept C2778459887 @default.
- W2786257066 hasConcept C41008148 @default.
- W2786257066 hasConcept C41895202 @default.
- W2786257066 hasConcept C50644808 @default.
- W2786257066 hasConcept C62520636 @default.
- W2786257066 hasConcept C78458016 @default.
- W2786257066 hasConcept C86803240 @default.
- W2786257066 hasConcept C98045186 @default.
- W2786257066 hasConceptScore W2786257066C111919701 @default.
- W2786257066 hasConceptScore W2786257066C119857082 @default.
- W2786257066 hasConceptScore W2786257066C121332964 @default.
- W2786257066 hasConceptScore W2786257066C121955636 @default.
- W2786257066 hasConceptScore W2786257066C124101348 @default.