Matches in SemOpenAlex for { <https://semopenalex.org/work/W2786436714> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2786436714 abstract "This paper explores the use of the standard approach for proving runtime bounds in discrete domains---often referred to as drift analysis---in the context of optimization on a continuous domain. Using this framework we analyze the (1+1) Evolution Strategy with one-fifth success rule on the sphere function. To deal with potential functions that are not lower-bounded, we formulate novel drift theorems. We then use the theorems to prove bounds on the expected hitting time to reach a certain target fitness in finite dimension $d$. The bounds are akin to linear convergence. We then study the dependency of the different terms on $d$ proving a convergence rate dependency of $Theta(1/d)$. Our results constitute the first non-asymptotic analysis for the algorithm considered as well as the first explicit application of drift analysis to a randomized search heuristic with continuous domain." @default.
- W2786436714 created "2018-02-23" @default.
- W2786436714 creator A5000470711 @default.
- W2786436714 creator A5038156559 @default.
- W2786436714 creator A5038757231 @default.
- W2786436714 date "2018-01-01" @default.
- W2786436714 modified "2023-09-23" @default.
- W2786436714 title "Drift Theory in Continuous Search Spaces: Expected Hitting Time of the (1+1)-ES with 1/5 Success Rule" @default.
- W2786436714 cites W1520299729 @default.
- W2786436714 cites W1653352711 @default.
- W2786436714 cites W1889627955 @default.
- W2786436714 cites W2023782941 @default.
- W2786436714 cites W2027964569 @default.
- W2786436714 cites W2079842915 @default.
- W2786436714 cites W2121811374 @default.
- W2786436714 cites W2165220807 @default.
- W2786436714 cites W2296100700 @default.
- W2786436714 cites W2514009750 @default.
- W2786436714 cites W2518282323 @default.
- W2786436714 cites W3122779104 @default.
- W2786436714 hasPublicationYear "2018" @default.
- W2786436714 type Work @default.
- W2786436714 sameAs 2786436714 @default.
- W2786436714 citedByCount "1" @default.
- W2786436714 countsByYear W27864367142019 @default.
- W2786436714 crossrefType "proceedings-article" @default.
- W2786436714 hasAuthorship W2786436714A5000470711 @default.
- W2786436714 hasAuthorship W2786436714A5038156559 @default.
- W2786436714 hasAuthorship W2786436714A5038757231 @default.
- W2786436714 hasBestOaLocation W27864367143 @default.
- W2786436714 hasConcept C11413529 @default.
- W2786436714 hasConcept C126255220 @default.
- W2786436714 hasConcept C144237770 @default.
- W2786436714 hasConcept C33923547 @default.
- W2786436714 hasConcept C41008148 @default.
- W2786436714 hasConceptScore W2786436714C11413529 @default.
- W2786436714 hasConceptScore W2786436714C126255220 @default.
- W2786436714 hasConceptScore W2786436714C144237770 @default.
- W2786436714 hasConceptScore W2786436714C33923547 @default.
- W2786436714 hasConceptScore W2786436714C41008148 @default.
- W2786436714 hasLocation W27864367141 @default.
- W2786436714 hasLocation W27864367142 @default.
- W2786436714 hasLocation W27864367143 @default.
- W2786436714 hasOpenAccess W2786436714 @default.
- W2786436714 hasPrimaryLocation W27864367141 @default.
- W2786436714 hasRelatedWork W1979597421 @default.
- W2786436714 hasRelatedWork W2007980826 @default.
- W2786436714 hasRelatedWork W2061531152 @default.
- W2786436714 hasRelatedWork W2069964982 @default.
- W2786436714 hasRelatedWork W2386767533 @default.
- W2786436714 hasRelatedWork W2748952813 @default.
- W2786436714 hasRelatedWork W2899084033 @default.
- W2786436714 hasRelatedWork W3002753104 @default.
- W2786436714 hasRelatedWork W4225152035 @default.
- W2786436714 hasRelatedWork W4245490552 @default.
- W2786436714 isParatext "false" @default.
- W2786436714 isRetracted "false" @default.
- W2786436714 magId "2786436714" @default.
- W2786436714 workType "article" @default.