Matches in SemOpenAlex for { <https://semopenalex.org/work/W2786532017> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2786532017 abstract "Discovering pattern from imbalanced data plays an important role in numerous applications, such as health service, cyber security, and financial engineering. However, the imbalanced data greatly compromise the performance of most learning algorithms. Recently, various synthetic sampling methods have been proposed to balance the dataset. Although these methods have achieved great success in many datasets, they are less effective for high-dimensional data, such as the image. In this paper, we propose a variational autoencoder (VAE) based synthetic data generation method for imbalanced learning. VAE can produce new samples which are similar to those in the original dataset, but not exactly the same. We evaluate and compare our proposed method with the traditional synthetic sampling methods on various datasets under five evaluation metrics. The experimental results demonstrate the effectiveness of the proposed method." @default.
- W2786532017 created "2018-02-23" @default.
- W2786532017 creator A5028613644 @default.
- W2786532017 creator A5054835425 @default.
- W2786532017 creator A5057879702 @default.
- W2786532017 date "2017-11-01" @default.
- W2786532017 modified "2023-10-09" @default.
- W2786532017 title "Variational autoencoder based synthetic data generation for imbalanced learning" @default.
- W2786532017 cites W1677182931 @default.
- W2786532017 cites W1849277567 @default.
- W2786532017 cites W2024223694 @default.
- W2786532017 cites W2063867591 @default.
- W2786532017 cites W2071072418 @default.
- W2786532017 cites W2084512860 @default.
- W2786532017 cites W2112796928 @default.
- W2786532017 cites W2118978333 @default.
- W2786532017 cites W2132791018 @default.
- W2786532017 cites W2136922672 @default.
- W2786532017 cites W2148143831 @default.
- W2786532017 cites W2490940596 @default.
- W2786532017 cites W2596340169 @default.
- W2786532017 cites W2600974717 @default.
- W2786532017 cites W2735109634 @default.
- W2786532017 cites W2755855437 @default.
- W2786532017 cites W2963702891 @default.
- W2786532017 doi "https://doi.org/10.1109/ssci.2017.8285168" @default.
- W2786532017 hasPublicationYear "2017" @default.
- W2786532017 type Work @default.
- W2786532017 sameAs 2786532017 @default.
- W2786532017 citedByCount "48" @default.
- W2786532017 countsByYear W27865320172018 @default.
- W2786532017 countsByYear W27865320172019 @default.
- W2786532017 countsByYear W27865320172020 @default.
- W2786532017 countsByYear W27865320172021 @default.
- W2786532017 countsByYear W27865320172022 @default.
- W2786532017 countsByYear W27865320172023 @default.
- W2786532017 crossrefType "proceedings-article" @default.
- W2786532017 hasAuthorship W2786532017A5028613644 @default.
- W2786532017 hasAuthorship W2786532017A5054835425 @default.
- W2786532017 hasAuthorship W2786532017A5057879702 @default.
- W2786532017 hasConcept C101738243 @default.
- W2786532017 hasConcept C106131492 @default.
- W2786532017 hasConcept C108583219 @default.
- W2786532017 hasConcept C119857082 @default.
- W2786532017 hasConcept C124101348 @default.
- W2786532017 hasConcept C140779682 @default.
- W2786532017 hasConcept C153180895 @default.
- W2786532017 hasConcept C154945302 @default.
- W2786532017 hasConcept C160920958 @default.
- W2786532017 hasConcept C2985946229 @default.
- W2786532017 hasConcept C31972630 @default.
- W2786532017 hasConcept C41008148 @default.
- W2786532017 hasConceptScore W2786532017C101738243 @default.
- W2786532017 hasConceptScore W2786532017C106131492 @default.
- W2786532017 hasConceptScore W2786532017C108583219 @default.
- W2786532017 hasConceptScore W2786532017C119857082 @default.
- W2786532017 hasConceptScore W2786532017C124101348 @default.
- W2786532017 hasConceptScore W2786532017C140779682 @default.
- W2786532017 hasConceptScore W2786532017C153180895 @default.
- W2786532017 hasConceptScore W2786532017C154945302 @default.
- W2786532017 hasConceptScore W2786532017C160920958 @default.
- W2786532017 hasConceptScore W2786532017C2985946229 @default.
- W2786532017 hasConceptScore W2786532017C31972630 @default.
- W2786532017 hasConceptScore W2786532017C41008148 @default.
- W2786532017 hasLocation W27865320171 @default.
- W2786532017 hasOpenAccess W2786532017 @default.
- W2786532017 hasPrimaryLocation W27865320171 @default.
- W2786532017 hasRelatedWork W2099471712 @default.
- W2786532017 hasRelatedWork W2106136950 @default.
- W2786532017 hasRelatedWork W2148143831 @default.
- W2786532017 hasRelatedWork W2317216092 @default.
- W2786532017 hasRelatedWork W2584414757 @default.
- W2786532017 hasRelatedWork W2617368871 @default.
- W2786532017 hasRelatedWork W2740749606 @default.
- W2786532017 hasRelatedWork W2756283809 @default.
- W2786532017 hasRelatedWork W2891982091 @default.
- W2786532017 hasRelatedWork W2897373884 @default.
- W2786532017 hasRelatedWork W2922054794 @default.
- W2786532017 hasRelatedWork W2977984285 @default.
- W2786532017 hasRelatedWork W3036326763 @default.
- W2786532017 hasRelatedWork W3089310265 @default.
- W2786532017 hasRelatedWork W3124821295 @default.
- W2786532017 hasRelatedWork W3154200785 @default.
- W2786532017 hasRelatedWork W3184121867 @default.
- W2786532017 hasRelatedWork W3187555739 @default.
- W2786532017 hasRelatedWork W3197015785 @default.
- W2786532017 hasRelatedWork W3197820259 @default.
- W2786532017 isParatext "false" @default.
- W2786532017 isRetracted "false" @default.
- W2786532017 magId "2786532017" @default.
- W2786532017 workType "article" @default.