Matches in SemOpenAlex for { <https://semopenalex.org/work/W2786644902> ?p ?o ?g. }
- W2786644902 endingPage "26" @default.
- W2786644902 startingPage "1" @default.
- W2786644902 abstract "•A review of 119 papers on ship detection and classification from optical satellite.•From 1978 to March 2017, showing an exponential growth in the number of papers.•Most published methods have very limited validation.•While big steps have been made, automatic algorithms are still far from perfect.•Increase in new observation and processing capabilities promises rapid advances.This paper provides an overview of existing literature on vessel/ship detection and classification from optical satellite imagery. Although SAR (Synthetic Aperture Radar) is still the leading technology for maritime monitoring, the number of studies based on optical satellite data is quickly growing. Altogether we analysed 119 papers on optical vessel detection and classification for the period from 1978 to March 2017. We start by introducing all the existing sensor systems for vessel detection, but subsequently focus only on optical imaging satellites. The article demonstrates the temporal development of optical satellite characteristics and connects this to the number and frequency of publications on vessel detection. After presenting the methods used for optical imagery-based vessel detection and classification in detail, along with the achieved detection accuracies, we also report possibilities for fusing optical data with other data sources. The studied papers show that the most common factors greatly influencing the vessel detection accuracy are the following: different weather conditions affecting sea surface characteristics, the quantity of clouds and haze, solar angle, and imaging sensor characteristics. All these factors bring great variations in the selection of the most suitable method; some still continue to pose unsolved challenges. For higher relevance and wider usage, we suggest that the algorithms for detection and classification should support a variety of targets and meteorological conditions, and ideally also a variety of optical satellite sensors. At least, they should be tested on many images under different conditions. This is not usually the case in the existent literature. We also observed that many authors omit an appropriate performance quantification, which is critical for a practical assessment and a numerical comparison of the presented algorithms. Overall it can be seen that vessel monitoring from spaceborne optical images is a popular research topic and has a great operational potential in the near future due to the large amount of satellite data, much of it free and open." @default.
- W2786644902 created "2018-02-23" @default.
- W2786644902 creator A5011486039 @default.
- W2786644902 creator A5055865165 @default.
- W2786644902 creator A5060870697 @default.
- W2786644902 date "2018-03-01" @default.
- W2786644902 modified "2023-10-16" @default.
- W2786644902 title "Vessel detection and classification from spaceborne optical images: A literature survey" @default.
- W2786644902 cites W1048318652 @default.
- W2786644902 cites W1511571041 @default.
- W2786644902 cites W1642400526 @default.
- W2786644902 cites W1970782782 @default.
- W2786644902 cites W1975157055 @default.
- W2786644902 cites W1977345771 @default.
- W2786644902 cites W1977990446 @default.
- W2786644902 cites W2002330476 @default.
- W2786644902 cites W2003059629 @default.
- W2786644902 cites W2003701329 @default.
- W2786644902 cites W2007582554 @default.
- W2786644902 cites W2017226600 @default.
- W2786644902 cites W2017448754 @default.
- W2786644902 cites W2018475703 @default.
- W2786644902 cites W2021344716 @default.
- W2786644902 cites W2022773386 @default.
- W2786644902 cites W2034011885 @default.
- W2786644902 cites W2037220441 @default.
- W2786644902 cites W2039967127 @default.
- W2786644902 cites W2046456446 @default.
- W2786644902 cites W2055567060 @default.
- W2786644902 cites W2056522964 @default.
- W2786644902 cites W2059873375 @default.
- W2786644902 cites W2061200049 @default.
- W2786644902 cites W2064094295 @default.
- W2786644902 cites W2066057667 @default.
- W2786644902 cites W2072895218 @default.
- W2786644902 cites W2076779311 @default.
- W2786644902 cites W2080890025 @default.
- W2786644902 cites W2084009882 @default.
- W2786644902 cites W2086141297 @default.
- W2786644902 cites W2086355237 @default.
- W2786644902 cites W2094496874 @default.
- W2786644902 cites W2100503224 @default.
- W2786644902 cites W2113827159 @default.
- W2786644902 cites W2114110048 @default.
- W2786644902 cites W2122524329 @default.
- W2786644902 cites W2131116417 @default.
- W2786644902 cites W2142055327 @default.
- W2786644902 cites W2145029791 @default.
- W2786644902 cites W2145448441 @default.
- W2786644902 cites W2150553106 @default.
- W2786644902 cites W2151622560 @default.
- W2786644902 cites W2164383685 @default.
- W2786644902 cites W2165090887 @default.
- W2786644902 cites W2167731172 @default.
- W2786644902 cites W2196088597 @default.
- W2786644902 cites W2275053611 @default.
- W2786644902 cites W2287352068 @default.
- W2786644902 cites W2292050768 @default.
- W2786644902 cites W2327887192 @default.
- W2786644902 cites W2334067442 @default.
- W2786644902 cites W2400138547 @default.
- W2786644902 cites W2442495293 @default.
- W2786644902 cites W2522713671 @default.
- W2786644902 cites W2550157261 @default.
- W2786644902 cites W2553011845 @default.
- W2786644902 cites W2567535626 @default.
- W2786644902 cites W2596246567 @default.
- W2786644902 cites W2596326966 @default.
- W2786644902 cites W2607434602 @default.
- W2786644902 cites W4240502843 @default.
- W2786644902 cites W4242563975 @default.
- W2786644902 cites W635610162 @default.
- W2786644902 doi "https://doi.org/10.1016/j.rse.2017.12.033" @default.
- W2786644902 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5877374" @default.
- W2786644902 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29622842" @default.
- W2786644902 hasPublicationYear "2018" @default.
- W2786644902 type Work @default.
- W2786644902 sameAs 2786644902 @default.
- W2786644902 citedByCount "173" @default.
- W2786644902 countsByYear W27866449022018 @default.
- W2786644902 countsByYear W27866449022019 @default.
- W2786644902 countsByYear W27866449022020 @default.
- W2786644902 countsByYear W27866449022021 @default.
- W2786644902 countsByYear W27866449022022 @default.
- W2786644902 countsByYear W27866449022023 @default.
- W2786644902 crossrefType "journal-article" @default.
- W2786644902 hasAuthorship W2786644902A5011486039 @default.
- W2786644902 hasAuthorship W2786644902A5055865165 @default.
- W2786644902 hasAuthorship W2786644902A5060870697 @default.
- W2786644902 hasBestOaLocation W27866449021 @default.
- W2786644902 hasConcept C127313418 @default.
- W2786644902 hasConcept C127413603 @default.
- W2786644902 hasConcept C146978453 @default.
- W2786644902 hasConcept C154945302 @default.
- W2786644902 hasConcept C19269812 @default.
- W2786644902 hasConcept C31972630 @default.
- W2786644902 hasConcept C41008148 @default.
- W2786644902 hasConcept C62649853 @default.