Matches in SemOpenAlex for { <https://semopenalex.org/work/W2786657259> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2786657259 abstract "Automatic recognition of emotions is an important part of affect-sensitive human-computer interaction (HCI). Expressive behaviors tend to be ambiguous with blended emotions during natural spontaneous conversations. Therefore, evaluators disagree on the perceived emotion, assigning multiple emotional classes to the same stimuli (e.g., sadness, anger, surprise). These observations have clear implications on emotion classification, where assigning a single descriptor per stimuli oversimplifies the intrinsic subjectivity in emotion perception. This study proposes a new formulation, where the emotional perception of a stimuli is a multidimensional Gaussian random variable with an unobserved distribution. Each dimension corresponds to an emotion characterized by a numerical scale. The covariance matrix of this distribution captures the intrinsic dependencies between different emotional categories. The process where an evaluator judges the stimuli is equivalent to sampling a point from this distribution, reporting the class with the highest value. The proposed approach recursively estimates this multimodal distribution using numerical methods. The mean of the Gaussian distribution is used as a soft label to train a deep neural network (DNN). Our experimental results show that the proposed training method leads to improvements in F-score over training with (1) hard-labels based on majority vote, and (2) soft-label framework proposed by other studies." @default.
- W2786657259 created "2018-02-23" @default.
- W2786657259 creator A5040793194 @default.
- W2786657259 creator A5041789037 @default.
- W2786657259 date "2017-10-01" @default.
- W2786657259 modified "2023-10-16" @default.
- W2786657259 title "Formulating emotion perception as a probabilistic model with application to categorical emotion classification" @default.
- W2786657259 cites W1514829146 @default.
- W2786657259 cites W1970155934 @default.
- W2786657259 cites W1998866511 @default.
- W2786657259 cites W2034467708 @default.
- W2786657259 cites W2058787788 @default.
- W2786657259 cites W2085662862 @default.
- W2786657259 cites W2152011577 @default.
- W2786657259 cites W2154024118 @default.
- W2786657259 cites W2154780170 @default.
- W2786657259 cites W2170876097 @default.
- W2786657259 cites W2239141610 @default.
- W2786657259 cites W2401417847 @default.
- W2786657259 cites W2508783453 @default.
- W2786657259 cites W2525412388 @default.
- W2786657259 cites W2550557083 @default.
- W2786657259 cites W2552810951 @default.
- W2786657259 cites W2661967629 @default.
- W2786657259 cites W2707551695 @default.
- W2786657259 cites W2742542661 @default.
- W2786657259 cites W4210267733 @default.
- W2786657259 doi "https://doi.org/10.1109/acii.2017.8273633" @default.
- W2786657259 hasPublicationYear "2017" @default.
- W2786657259 type Work @default.
- W2786657259 sameAs 2786657259 @default.
- W2786657259 citedByCount "23" @default.
- W2786657259 countsByYear W27866572592018 @default.
- W2786657259 countsByYear W27866572592019 @default.
- W2786657259 countsByYear W27866572592020 @default.
- W2786657259 countsByYear W27866572592021 @default.
- W2786657259 countsByYear W27866572592022 @default.
- W2786657259 countsByYear W27866572592023 @default.
- W2786657259 crossrefType "proceedings-article" @default.
- W2786657259 hasAuthorship W2786657259A5040793194 @default.
- W2786657259 hasAuthorship W2786657259A5041789037 @default.
- W2786657259 hasConcept C119857082 @default.
- W2786657259 hasConcept C153180895 @default.
- W2786657259 hasConcept C154945302 @default.
- W2786657259 hasConcept C15744967 @default.
- W2786657259 hasConcept C169760540 @default.
- W2786657259 hasConcept C195704467 @default.
- W2786657259 hasConcept C206310091 @default.
- W2786657259 hasConcept C26760741 @default.
- W2786657259 hasConcept C2776141551 @default.
- W2786657259 hasConcept C2779302386 @default.
- W2786657259 hasConcept C2779812673 @default.
- W2786657259 hasConcept C2780343955 @default.
- W2786657259 hasConcept C28490314 @default.
- W2786657259 hasConcept C41008148 @default.
- W2786657259 hasConcept C5274069 @default.
- W2786657259 hasConcept C77805123 @default.
- W2786657259 hasConceptScore W2786657259C119857082 @default.
- W2786657259 hasConceptScore W2786657259C153180895 @default.
- W2786657259 hasConceptScore W2786657259C154945302 @default.
- W2786657259 hasConceptScore W2786657259C15744967 @default.
- W2786657259 hasConceptScore W2786657259C169760540 @default.
- W2786657259 hasConceptScore W2786657259C195704467 @default.
- W2786657259 hasConceptScore W2786657259C206310091 @default.
- W2786657259 hasConceptScore W2786657259C26760741 @default.
- W2786657259 hasConceptScore W2786657259C2776141551 @default.
- W2786657259 hasConceptScore W2786657259C2779302386 @default.
- W2786657259 hasConceptScore W2786657259C2779812673 @default.
- W2786657259 hasConceptScore W2786657259C2780343955 @default.
- W2786657259 hasConceptScore W2786657259C28490314 @default.
- W2786657259 hasConceptScore W2786657259C41008148 @default.
- W2786657259 hasConceptScore W2786657259C5274069 @default.
- W2786657259 hasConceptScore W2786657259C77805123 @default.
- W2786657259 hasLocation W27866572591 @default.
- W2786657259 hasOpenAccess W2786657259 @default.
- W2786657259 hasPrimaryLocation W27866572591 @default.
- W2786657259 hasRelatedWork W2016792685 @default.
- W2786657259 hasRelatedWork W2028755160 @default.
- W2786657259 hasRelatedWork W2078873274 @default.
- W2786657259 hasRelatedWork W2079521622 @default.
- W2786657259 hasRelatedWork W2140144656 @default.
- W2786657259 hasRelatedWork W2165063134 @default.
- W2786657259 hasRelatedWork W2320066983 @default.
- W2786657259 hasRelatedWork W2810172795 @default.
- W2786657259 hasRelatedWork W3162580470 @default.
- W2786657259 hasRelatedWork W3206592872 @default.
- W2786657259 isParatext "false" @default.
- W2786657259 isRetracted "false" @default.
- W2786657259 magId "2786657259" @default.
- W2786657259 workType "article" @default.