Matches in SemOpenAlex for { <https://semopenalex.org/work/W2786985510> ?p ?o ?g. }
- W2786985510 endingPage "33" @default.
- W2786985510 startingPage "20" @default.
- W2786985510 abstract "Water management is currently a priority in all integrated water cycle sections when a close relation between water and energy is considered. Wastewater treatment plants are high-energy consumers and, therefore, energy reduction is necessary to improve the energy footprint and to also reduce operating costs. This research presents a combined strategy using linear mathematical programming which, in turn, employs current treatment techniques with dilution through regenerated water at the treatment plant. The strategy used a new model that was adapted to minimise exploitation costs. The strategy also obtained a global solution by considering the uncertainty of the different variables, which are included in the treatment process. This uncertainty was considered by fuzzy goal programming, which allowed water managers to optimise treatment according to energy costs, contaminant loads, and the inlet and outlet concentrations. A mathematical tool was applied to a real case study located in a township in the province of Alicante (Spain). The solution showed a 49.47% reduction in economic cost when comparing the optimised solution to the deterministic solution. This energy reduction was 803 GWh/year and the theoretical reduction of greenhouse emissions was 586.2 tCO2/year." @default.
- W2786985510 created "2018-02-23" @default.
- W2786985510 creator A5051490654 @default.
- W2786985510 creator A5056729394 @default.
- W2786985510 creator A5070107626 @default.
- W2786985510 creator A5074508403 @default.
- W2786985510 creator A5075676825 @default.
- W2786985510 date "2018-04-01" @default.
- W2786985510 modified "2023-10-18" @default.
- W2786985510 title "Analysis of a wastewater treatment plant using fuzzy goal programming as a management tool: A case study" @default.
- W2786985510 cites W1964682347 @default.
- W2786985510 cites W1970110862 @default.
- W2786985510 cites W1973855211 @default.
- W2786985510 cites W1979160823 @default.
- W2786985510 cites W1980088797 @default.
- W2786985510 cites W1980832287 @default.
- W2786985510 cites W1983878035 @default.
- W2786985510 cites W1984550874 @default.
- W2786985510 cites W1988131669 @default.
- W2786985510 cites W1991935496 @default.
- W2786985510 cites W2000602583 @default.
- W2786985510 cites W2008383039 @default.
- W2786985510 cites W2030773899 @default.
- W2786985510 cites W2031699305 @default.
- W2786985510 cites W2035812476 @default.
- W2786985510 cites W2043902294 @default.
- W2786985510 cites W2049014829 @default.
- W2786985510 cites W2050558843 @default.
- W2786985510 cites W2060487580 @default.
- W2786985510 cites W2060631458 @default.
- W2786985510 cites W2069588925 @default.
- W2786985510 cites W2070294893 @default.
- W2786985510 cites W2070450593 @default.
- W2786985510 cites W2077299952 @default.
- W2786985510 cites W2079465420 @default.
- W2786985510 cites W2085896490 @default.
- W2786985510 cites W2086467817 @default.
- W2786985510 cites W2097124325 @default.
- W2786985510 cites W2108216241 @default.
- W2786985510 cites W2112594581 @default.
- W2786985510 cites W2134886743 @default.
- W2786985510 cites W2141740066 @default.
- W2786985510 cites W2142622162 @default.
- W2786985510 cites W2152164940 @default.
- W2786985510 cites W2195693425 @default.
- W2786985510 cites W2299040064 @default.
- W2786985510 cites W2327081397 @default.
- W2786985510 cites W2333204869 @default.
- W2786985510 cites W2337700193 @default.
- W2786985510 cites W2468135336 @default.
- W2786985510 cites W2478255603 @default.
- W2786985510 cites W2479182137 @default.
- W2786985510 cites W2507245186 @default.
- W2786985510 cites W2748258452 @default.
- W2786985510 cites W2620945699 @default.
- W2786985510 doi "https://doi.org/10.1016/j.jclepro.2018.01.129" @default.
- W2786985510 hasPublicationYear "2018" @default.
- W2786985510 type Work @default.
- W2786985510 sameAs 2786985510 @default.
- W2786985510 citedByCount "15" @default.
- W2786985510 countsByYear W27869855102018 @default.
- W2786985510 countsByYear W27869855102019 @default.
- W2786985510 countsByYear W27869855102020 @default.
- W2786985510 countsByYear W27869855102021 @default.
- W2786985510 countsByYear W27869855102022 @default.
- W2786985510 crossrefType "journal-article" @default.
- W2786985510 hasAuthorship W2786985510A5051490654 @default.
- W2786985510 hasAuthorship W2786985510A5056729394 @default.
- W2786985510 hasAuthorship W2786985510A5070107626 @default.
- W2786985510 hasAuthorship W2786985510A5074508403 @default.
- W2786985510 hasAuthorship W2786985510A5075676825 @default.
- W2786985510 hasConcept C111335779 @default.
- W2786985510 hasConcept C111919701 @default.
- W2786985510 hasConcept C126255220 @default.
- W2786985510 hasConcept C127413603 @default.
- W2786985510 hasConcept C154945302 @default.
- W2786985510 hasConcept C18903297 @default.
- W2786985510 hasConcept C21880701 @default.
- W2786985510 hasConcept C2524010 @default.
- W2786985510 hasConcept C33923547 @default.
- W2786985510 hasConcept C39432304 @default.
- W2786985510 hasConcept C41008148 @default.
- W2786985510 hasConcept C41045048 @default.
- W2786985510 hasConcept C42475967 @default.
- W2786985510 hasConcept C47737302 @default.
- W2786985510 hasConcept C57442070 @default.
- W2786985510 hasConcept C58166 @default.
- W2786985510 hasConcept C61157135 @default.
- W2786985510 hasConcept C86803240 @default.
- W2786985510 hasConcept C87717796 @default.
- W2786985510 hasConcept C94061648 @default.
- W2786985510 hasConcept C98045186 @default.
- W2786985510 hasConceptScore W2786985510C111335779 @default.
- W2786985510 hasConceptScore W2786985510C111919701 @default.
- W2786985510 hasConceptScore W2786985510C126255220 @default.
- W2786985510 hasConceptScore W2786985510C127413603 @default.
- W2786985510 hasConceptScore W2786985510C154945302 @default.
- W2786985510 hasConceptScore W2786985510C18903297 @default.