Matches in SemOpenAlex for { <https://semopenalex.org/work/W2786997513> ?p ?o ?g. }
- W2786997513 endingPage "33" @default.
- W2786997513 startingPage "1" @default.
- W2786997513 abstract "Many social network applications depend on robust representations of spatio-temporal data. In this work, we present an embedding model based on feed-forward neural networks which transforms social media check-ins into dense feature vectors encoding geographic, temporal, and functional aspects for modeling places, neighborhoods, and users. We employ the embedding model in a variety of applications including location recommendation , urban functional zone study , and crime prediction . For location recommendation , we propose a Spatio-Temporal Embedding Similarity algorithm (STES) based on the embedding model. In a range of experiments on real life data collected from Foursquare, we demonstrate our model’s effectiveness at characterizing places and people and its applicability in aforementioned problem domains. Finally, we select eight major cities around the globe and verify the robustness and generality of our model by porting pre-trained models from one city to another, thereby alleviating the need for costly local training." @default.
- W2786997513 created "2018-02-23" @default.
- W2786997513 creator A5014292481 @default.
- W2786997513 creator A5014921416 @default.
- W2786997513 date "2018-03-13" @default.
- W2786997513 modified "2023-09-27" @default.
- W2786997513 title "Unsupervised Learning of Parsimonious General-Purpose Embeddings for User and Location Modeling" @default.
- W2786997513 cites W144670803 @default.
- W2786997513 cites W1501362048 @default.
- W2786997513 cites W1972243012 @default.
- W2786997513 cites W1975152892 @default.
- W2786997513 cites W1976019307 @default.
- W2786997513 cites W1979476035 @default.
- W2786997513 cites W1984189333 @default.
- W2786997513 cites W1985101747 @default.
- W2786997513 cites W1987971958 @default.
- W2786997513 cites W1990444226 @default.
- W2786997513 cites W2001344462 @default.
- W2786997513 cites W2009779426 @default.
- W2786997513 cites W2017921654 @default.
- W2786997513 cites W2023137161 @default.
- W2786997513 cites W2025101014 @default.
- W2786997513 cites W2033403400 @default.
- W2786997513 cites W2034688657 @default.
- W2786997513 cites W2044672016 @default.
- W2786997513 cites W2054141820 @default.
- W2786997513 cites W2054610764 @default.
- W2786997513 cites W2057763140 @default.
- W2786997513 cites W2059512573 @default.
- W2786997513 cites W2062079386 @default.
- W2786997513 cites W2062134657 @default.
- W2786997513 cites W2064643102 @default.
- W2786997513 cites W2070075246 @default.
- W2786997513 cites W2073072860 @default.
- W2786997513 cites W2073093414 @default.
- W2786997513 cites W2074194940 @default.
- W2786997513 cites W2082260230 @default.
- W2786997513 cites W2084413241 @default.
- W2786997513 cites W2085880494 @default.
- W2786997513 cites W2113123156 @default.
- W2786997513 cites W2114762199 @default.
- W2786997513 cites W2133266261 @default.
- W2786997513 cites W2139554337 @default.
- W2786997513 cites W2139809240 @default.
- W2786997513 cites W2147876157 @default.
- W2786997513 cites W2149510050 @default.
- W2786997513 cites W2154008884 @default.
- W2786997513 cites W2164183644 @default.
- W2786997513 cites W2194775991 @default.
- W2786997513 cites W2250879510 @default.
- W2786997513 cites W2251292973 @default.
- W2786997513 cites W2294547624 @default.
- W2786997513 cites W2418070914 @default.
- W2786997513 cites W2434565296 @default.
- W2786997513 cites W2444485119 @default.
- W2786997513 cites W2474765392 @default.
- W2786997513 cites W2499345104 @default.
- W2786997513 cites W2531384334 @default.
- W2786997513 cites W2534727297 @default.
- W2786997513 cites W2554704889 @default.
- W2786997513 cites W2728796024 @default.
- W2786997513 cites W2750303327 @default.
- W2786997513 cites W3104097132 @default.
- W2786997513 doi "https://doi.org/10.1145/3182165" @default.
- W2786997513 hasPublicationYear "2018" @default.
- W2786997513 type Work @default.
- W2786997513 sameAs 2786997513 @default.
- W2786997513 citedByCount "28" @default.
- W2786997513 countsByYear W27869975132019 @default.
- W2786997513 countsByYear W27869975132020 @default.
- W2786997513 countsByYear W27869975132021 @default.
- W2786997513 countsByYear W27869975132022 @default.
- W2786997513 countsByYear W27869975132023 @default.
- W2786997513 crossrefType "journal-article" @default.
- W2786997513 hasAuthorship W2786997513A5014292481 @default.
- W2786997513 hasAuthorship W2786997513A5014921416 @default.
- W2786997513 hasConcept C104317684 @default.
- W2786997513 hasConcept C106251023 @default.
- W2786997513 hasConcept C108583219 @default.
- W2786997513 hasConcept C119857082 @default.
- W2786997513 hasConcept C124101348 @default.
- W2786997513 hasConcept C136197465 @default.
- W2786997513 hasConcept C138885662 @default.
- W2786997513 hasConcept C154945302 @default.
- W2786997513 hasConcept C15744967 @default.
- W2786997513 hasConcept C185592680 @default.
- W2786997513 hasConcept C199360897 @default.
- W2786997513 hasConcept C2776401178 @default.
- W2786997513 hasConcept C2777904410 @default.
- W2786997513 hasConcept C2778827112 @default.
- W2786997513 hasConcept C2780767217 @default.
- W2786997513 hasConcept C41008148 @default.
- W2786997513 hasConcept C41608201 @default.
- W2786997513 hasConcept C41895202 @default.
- W2786997513 hasConcept C542102704 @default.
- W2786997513 hasConcept C55493867 @default.
- W2786997513 hasConcept C63479239 @default.
- W2786997513 hasConceptScore W2786997513C104317684 @default.