Matches in SemOpenAlex for { <https://semopenalex.org/work/W2787259145> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2787259145 abstract "Many construction companies and individuals (construction designers) are still using spreadsheets and laboratory tests just to obtain a certain data. In the field of technologies, advancement will contribute to the improvement of designing structures in terms of usefulness and effectiveness. By using the principle of artificial neural network, this study developed a sorptivity model which gives immediate quantities with high accuracy and precision which are needed to attain appropriate sorptivity values of concrete design mix. In this study, 40 concrete samples with varying percent replacement of copper slag to sand were tested for sorptivity by following the ASTM C1585 which is the Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. These values in turn were used in the development of the sorptivity model using Artificial Neural Network. This study used the software called Matrix Laboratory (MATLAB) to train several neural networks. Several numbers of neurons in the hidden layer were considered because there is no actual study that suggests that a certain number of nodes in the hidden layer produce the best model. A parametric testing was conducted to determine which of the parameters considered have the greatest significance to the target output. The predicted results of the best model were compared to the experimental values of sorptivity and produced a 2.36 percentage error. The study results suggest that ANN models could be used to predict the sorptivity value of a concrete sample. The model produced a good prediction result." @default.
- W2787259145 created "2018-02-23" @default.
- W2787259145 creator A5008126833 @default.
- W2787259145 creator A5026587321 @default.
- W2787259145 creator A5031739320 @default.
- W2787259145 creator A5039292576 @default.
- W2787259145 creator A5042978210 @default.
- W2787259145 date "2017-12-01" @default.
- W2787259145 modified "2023-09-26" @default.
- W2787259145 title "Application of artificial neural network in determination of sorptivity model of concrete with varying percent of replacement of sand to copper slag" @default.
- W2787259145 cites W1975240933 @default.
- W2787259145 cites W1980259934 @default.
- W2787259145 cites W1996237496 @default.
- W2787259145 cites W2728592499 @default.
- W2787259145 doi "https://doi.org/10.1109/hnicem.2017.8269537" @default.
- W2787259145 hasPublicationYear "2017" @default.
- W2787259145 type Work @default.
- W2787259145 sameAs 2787259145 @default.
- W2787259145 citedByCount "1" @default.
- W2787259145 countsByYear W27872591452022 @default.
- W2787259145 crossrefType "proceedings-article" @default.
- W2787259145 hasAuthorship W2787259145A5008126833 @default.
- W2787259145 hasAuthorship W2787259145A5026587321 @default.
- W2787259145 hasAuthorship W2787259145A5031739320 @default.
- W2787259145 hasAuthorship W2787259145A5039292576 @default.
- W2787259145 hasAuthorship W2787259145A5042978210 @default.
- W2787259145 hasConcept C105795698 @default.
- W2787259145 hasConcept C117251300 @default.
- W2787259145 hasConcept C119857082 @default.
- W2787259145 hasConcept C127413603 @default.
- W2787259145 hasConcept C159048435 @default.
- W2787259145 hasConcept C187320778 @default.
- W2787259145 hasConcept C191897082 @default.
- W2787259145 hasConcept C192562407 @default.
- W2787259145 hasConcept C2776994862 @default.
- W2787259145 hasConcept C2777364628 @default.
- W2787259145 hasConcept C33923547 @default.
- W2787259145 hasConcept C41008148 @default.
- W2787259145 hasConcept C50644808 @default.
- W2787259145 hasConcept C544778455 @default.
- W2787259145 hasConcept C6648577 @default.
- W2787259145 hasConcept C78519656 @default.
- W2787259145 hasConceptScore W2787259145C105795698 @default.
- W2787259145 hasConceptScore W2787259145C117251300 @default.
- W2787259145 hasConceptScore W2787259145C119857082 @default.
- W2787259145 hasConceptScore W2787259145C127413603 @default.
- W2787259145 hasConceptScore W2787259145C159048435 @default.
- W2787259145 hasConceptScore W2787259145C187320778 @default.
- W2787259145 hasConceptScore W2787259145C191897082 @default.
- W2787259145 hasConceptScore W2787259145C192562407 @default.
- W2787259145 hasConceptScore W2787259145C2776994862 @default.
- W2787259145 hasConceptScore W2787259145C2777364628 @default.
- W2787259145 hasConceptScore W2787259145C33923547 @default.
- W2787259145 hasConceptScore W2787259145C41008148 @default.
- W2787259145 hasConceptScore W2787259145C50644808 @default.
- W2787259145 hasConceptScore W2787259145C544778455 @default.
- W2787259145 hasConceptScore W2787259145C6648577 @default.
- W2787259145 hasConceptScore W2787259145C78519656 @default.
- W2787259145 hasLocation W27872591451 @default.
- W2787259145 hasOpenAccess W2787259145 @default.
- W2787259145 hasPrimaryLocation W27872591451 @default.
- W2787259145 hasRelatedWork W2099446180 @default.
- W2787259145 hasRelatedWork W2358366058 @default.
- W2787259145 hasRelatedWork W2361786562 @default.
- W2787259145 hasRelatedWork W2362296749 @default.
- W2787259145 hasRelatedWork W2368430571 @default.
- W2787259145 hasRelatedWork W2386504982 @default.
- W2787259145 hasRelatedWork W2748952813 @default.
- W2787259145 hasRelatedWork W2899084033 @default.
- W2787259145 hasRelatedWork W3088091744 @default.
- W2787259145 hasRelatedWork W3097106070 @default.
- W2787259145 isParatext "false" @default.
- W2787259145 isRetracted "false" @default.
- W2787259145 magId "2787259145" @default.
- W2787259145 workType "article" @default.