Matches in SemOpenAlex for { <https://semopenalex.org/work/W2787260241> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2787260241 abstract "The field of image computing incorporates the crucial subject of character recognition which is gaining significant importance and extensive research in the current wake of digital revolution. The goal is to find an effective software tool capable of accurately identifying the characters. The variations in a single alphabet itself and the plethora of handwriting varieties make this a challenging task. The proposed solution comprises of a series of steps for the purpose of classification. System training and testing incorporates hundred instances of handwritten digit images from MNIST Dataset. Preprocessing of the image enhances data images prior to computational processing. Input image are converted into gray scale and finally into binary. This is followed by morphological operations and the images are then converted into Comma Separated Files to be able to be used as Training and Testing Dataset in WEKA. Pattern recognition is done by Hoeffding Tree, Decision tree and Random forest methodologies to ultimately compare them on a set of benchmarks to find the most effective tool marked on a set of measures such as efficiency, effectiveness, time to perform the complete process of classification, etc. On the basis of the key parameters which include classified instances of the digits, error rate and time taken for the classification, Hoeffding tree is found to be most effective in terms of time taken to build model, precision, recall and confusion matrix. The future work requires inclusion of an extensive data set to declare the best among these approaches." @default.
- W2787260241 created "2018-02-23" @default.
- W2787260241 creator A5050015291 @default.
- W2787260241 creator A5071696435 @default.
- W2787260241 creator A5086398180 @default.
- W2787260241 creator A5088919875 @default.
- W2787260241 date "2017-06-01" @default.
- W2787260241 modified "2023-10-14" @default.
- W2787260241 title "Handwritten digit recognition using hoeffding tree, decision tree and random forests — A comparative approach" @default.
- W2787260241 cites W1974614303 @default.
- W2787260241 cites W2021879417 @default.
- W2787260241 cites W2101522199 @default.
- W2787260241 cites W2146097215 @default.
- W2787260241 cites W2507802403 @default.
- W2787260241 cites W2978123082 @default.
- W2787260241 cites W4254470913 @default.
- W2787260241 doi "https://doi.org/10.1109/iccids.2017.8272641" @default.
- W2787260241 hasPublicationYear "2017" @default.
- W2787260241 type Work @default.
- W2787260241 sameAs 2787260241 @default.
- W2787260241 citedByCount "12" @default.
- W2787260241 countsByYear W27872602412018 @default.
- W2787260241 countsByYear W27872602412019 @default.
- W2787260241 countsByYear W27872602412020 @default.
- W2787260241 countsByYear W27872602412021 @default.
- W2787260241 countsByYear W27872602412022 @default.
- W2787260241 countsByYear W27872602412023 @default.
- W2787260241 crossrefType "proceedings-article" @default.
- W2787260241 hasAuthorship W2787260241A5050015291 @default.
- W2787260241 hasAuthorship W2787260241A5071696435 @default.
- W2787260241 hasAuthorship W2787260241A5086398180 @default.
- W2787260241 hasAuthorship W2787260241A5088919875 @default.
- W2787260241 hasConcept C108583219 @default.
- W2787260241 hasConcept C112640561 @default.
- W2787260241 hasConcept C113174947 @default.
- W2787260241 hasConcept C119857082 @default.
- W2787260241 hasConcept C124101348 @default.
- W2787260241 hasConcept C134306372 @default.
- W2787260241 hasConcept C138602881 @default.
- W2787260241 hasConcept C153180895 @default.
- W2787260241 hasConcept C154945302 @default.
- W2787260241 hasConcept C169258074 @default.
- W2787260241 hasConcept C190502265 @default.
- W2787260241 hasConcept C33923547 @default.
- W2787260241 hasConcept C34736171 @default.
- W2787260241 hasConcept C41008148 @default.
- W2787260241 hasConcept C52622490 @default.
- W2787260241 hasConcept C84525736 @default.
- W2787260241 hasConceptScore W2787260241C108583219 @default.
- W2787260241 hasConceptScore W2787260241C112640561 @default.
- W2787260241 hasConceptScore W2787260241C113174947 @default.
- W2787260241 hasConceptScore W2787260241C119857082 @default.
- W2787260241 hasConceptScore W2787260241C124101348 @default.
- W2787260241 hasConceptScore W2787260241C134306372 @default.
- W2787260241 hasConceptScore W2787260241C138602881 @default.
- W2787260241 hasConceptScore W2787260241C153180895 @default.
- W2787260241 hasConceptScore W2787260241C154945302 @default.
- W2787260241 hasConceptScore W2787260241C169258074 @default.
- W2787260241 hasConceptScore W2787260241C190502265 @default.
- W2787260241 hasConceptScore W2787260241C33923547 @default.
- W2787260241 hasConceptScore W2787260241C34736171 @default.
- W2787260241 hasConceptScore W2787260241C41008148 @default.
- W2787260241 hasConceptScore W2787260241C52622490 @default.
- W2787260241 hasConceptScore W2787260241C84525736 @default.
- W2787260241 hasLocation W27872602411 @default.
- W2787260241 hasOpenAccess W2787260241 @default.
- W2787260241 hasPrimaryLocation W27872602411 @default.
- W2787260241 hasRelatedWork W3148392167 @default.
- W2787260241 hasRelatedWork W4280560892 @default.
- W2787260241 hasRelatedWork W4293525103 @default.
- W2787260241 hasRelatedWork W4293767609 @default.
- W2787260241 hasRelatedWork W4308191010 @default.
- W2787260241 hasRelatedWork W4312632137 @default.
- W2787260241 hasRelatedWork W4312983793 @default.
- W2787260241 hasRelatedWork W4318350883 @default.
- W2787260241 hasRelatedWork W4361795583 @default.
- W2787260241 hasRelatedWork W4378176178 @default.
- W2787260241 isParatext "false" @default.
- W2787260241 isRetracted "false" @default.
- W2787260241 magId "2787260241" @default.
- W2787260241 workType "article" @default.