Matches in SemOpenAlex for { <https://semopenalex.org/work/W2787462651> ?p ?o ?g. }
- W2787462651 abstract "To build a satisfying chatbot that has the ability of managing a goal-oriented multi-turn dialogue, accurate modeling of human conversation is crucial. In this paper we concentrate on the task of response selection for multi-turn human-computer conversation with a given context. Previous approaches show weakness in capturing information of rare keywords that appear in either or both context and correct response, and struggle with long input sequences. We propose Cross Convolution Network (CCN) and Multi Frequency word embedding to address both problems. We train several models using the Ubuntu Dialogue dataset which is the largest freely available multi-turn based dialogue corpus. We further build an ensemble model by averaging predictions of multiple models. We achieve a new state-of-the-art on this dataset with considerable improvements compared to previous best results." @default.
- W2787462651 created "2018-02-23" @default.
- W2787462651 creator A5022466699 @default.
- W2787462651 creator A5062807512 @default.
- W2787462651 creator A5091747149 @default.
- W2787462651 date "2018-02-15" @default.
- W2787462651 modified "2023-09-27" @default.
- W2787462651 title "Improving Retrieval Modeling Using Cross Convolution Networks And Multi Frequency Word Embedding" @default.
- W2787462651 cites W1591825359 @default.
- W2787462651 cites W1901600440 @default.
- W2787462651 cites W1910529161 @default.
- W2787462651 cites W2100805904 @default.
- W2787462651 cites W2108806737 @default.
- W2787462651 cites W2120615054 @default.
- W2787462651 cites W2128892113 @default.
- W2787462651 cites W2167917621 @default.
- W2787462651 cites W2197546379 @default.
- W2787462651 cites W2250539671 @default.
- W2787462651 cites W2251079237 @default.
- W2787462651 cites W2306229986 @default.
- W2787462651 cites W2339852062 @default.
- W2787462651 cites W2399060250 @default.
- W2787462651 cites W2561368124 @default.
- W2787462651 cites W2891416139 @default.
- W2787462651 cites W2949888546 @default.
- W2787462651 cites W2950133940 @default.
- W2787462651 cites W2950635152 @default.
- W2787462651 cites W2951176429 @default.
- W2787462651 cites W2951580200 @default.
- W2787462651 cites W2952013107 @default.
- W2787462651 cites W295828404 @default.
- W2787462651 cites W2963053846 @default.
- W2787462651 cites W2963093799 @default.
- W2787462651 cites W2963715136 @default.
- W2787462651 cites W2963963856 @default.
- W2787462651 cites W836999996 @default.
- W2787462651 hasPublicationYear "2018" @default.
- W2787462651 type Work @default.
- W2787462651 sameAs 2787462651 @default.
- W2787462651 citedByCount "3" @default.
- W2787462651 countsByYear W27874626512018 @default.
- W2787462651 countsByYear W27874626512019 @default.
- W2787462651 crossrefType "posted-content" @default.
- W2787462651 hasAuthorship W2787462651A5022466699 @default.
- W2787462651 hasAuthorship W2787462651A5062807512 @default.
- W2787462651 hasAuthorship W2787462651A5091747149 @default.
- W2787462651 hasConcept C119857082 @default.
- W2787462651 hasConcept C138885662 @default.
- W2787462651 hasConcept C151730666 @default.
- W2787462651 hasConcept C154945302 @default.
- W2787462651 hasConcept C162324750 @default.
- W2787462651 hasConcept C187736073 @default.
- W2787462651 hasConcept C204321447 @default.
- W2787462651 hasConcept C2777200299 @default.
- W2787462651 hasConcept C2777462759 @default.
- W2787462651 hasConcept C2779041454 @default.
- W2787462651 hasConcept C2779343474 @default.
- W2787462651 hasConcept C2780451532 @default.
- W2787462651 hasConcept C28490314 @default.
- W2787462651 hasConcept C41008148 @default.
- W2787462651 hasConcept C41608201 @default.
- W2787462651 hasConcept C41895202 @default.
- W2787462651 hasConcept C45347329 @default.
- W2787462651 hasConcept C50644808 @default.
- W2787462651 hasConcept C81917197 @default.
- W2787462651 hasConcept C86803240 @default.
- W2787462651 hasConcept C90805587 @default.
- W2787462651 hasConceptScore W2787462651C119857082 @default.
- W2787462651 hasConceptScore W2787462651C138885662 @default.
- W2787462651 hasConceptScore W2787462651C151730666 @default.
- W2787462651 hasConceptScore W2787462651C154945302 @default.
- W2787462651 hasConceptScore W2787462651C162324750 @default.
- W2787462651 hasConceptScore W2787462651C187736073 @default.
- W2787462651 hasConceptScore W2787462651C204321447 @default.
- W2787462651 hasConceptScore W2787462651C2777200299 @default.
- W2787462651 hasConceptScore W2787462651C2777462759 @default.
- W2787462651 hasConceptScore W2787462651C2779041454 @default.
- W2787462651 hasConceptScore W2787462651C2779343474 @default.
- W2787462651 hasConceptScore W2787462651C2780451532 @default.
- W2787462651 hasConceptScore W2787462651C28490314 @default.
- W2787462651 hasConceptScore W2787462651C41008148 @default.
- W2787462651 hasConceptScore W2787462651C41608201 @default.
- W2787462651 hasConceptScore W2787462651C41895202 @default.
- W2787462651 hasConceptScore W2787462651C45347329 @default.
- W2787462651 hasConceptScore W2787462651C50644808 @default.
- W2787462651 hasConceptScore W2787462651C81917197 @default.
- W2787462651 hasConceptScore W2787462651C86803240 @default.
- W2787462651 hasConceptScore W2787462651C90805587 @default.
- W2787462651 hasLocation W27874626511 @default.
- W2787462651 hasOpenAccess W2787462651 @default.
- W2787462651 hasPrimaryLocation W27874626511 @default.
- W2787462651 hasRelatedWork W2339852062 @default.
- W2787462651 hasRelatedWork W2765963752 @default.
- W2787462651 hasRelatedWork W2886847936 @default.
- W2787462651 hasRelatedWork W2891416139 @default.
- W2787462651 hasRelatedWork W2942614241 @default.
- W2787462651 hasRelatedWork W2963937185 @default.
- W2787462651 hasRelatedWork W2968853227 @default.
- W2787462651 hasRelatedWork W2971639707 @default.
- W2787462651 hasRelatedWork W2985686011 @default.