Matches in SemOpenAlex for { <https://semopenalex.org/work/W2787490135> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2787490135 abstract "Computation of the vertices of the convex hull of a set $S$ of $n$ points in $mathbb{R} ^m$ is a fundamental problem in computational geometry, optimization, machine learning and more. We present All Vertex Triangle Algorithm (AVTA), a robust and efficient algorithm for computing the subset $overline S$ of all $K$ vertices of $conv(S)$, the convex hull of $S$. If $Gamma_*$ is the minimum of the distances from each vertex to the convex hull of the remaining vertices, given any $gamma leq gamma_* = Gamma_*/R$, $R$ the diameter of $S$, $AVTA$ computes $overline S$ in $O(nK(m+ gamma^{-2}))$ operations. If $gamma_*$ is unknown but $K$ is known, AVTA computes $overline S$ in $O(nK(m+ gamma_*^{-2})) log(gamma_*^{-1})$ operations. More generally, given $t in (0,1)$, AVTA computes a subset $overline S^t$ of $overline S$ in $O(n |overline S^t|(m+ t^{-2}))$ operations, where the distance between any $p in conv(S)$ to $conv(overline S^t)$ is at most $t R$. Next we consider AVTA where input is $S_varepsilon$, an $varepsilon$ perturbation of $S$. Assuming a bound on $varepsilon$ in terms of the minimum of the distances of vertices of $conv(S)$ to the convex hull of the remaining point of $S$, we derive analogous complexity bounds for computing $overline S_varepsilon$. We also analyze AVTA under random projections of $S$ or $S_varepsilon$. Finally, via AVTA we design new practical algorithms for two popular machine learning problems: topic modeling and non-negative matrix factorization. For topic models AVTA leads to significantly better reconstruction of the topic-word matrix than state of the art approaches~cite{arora2013practical, bansal2014provable}. For non-negative matrix AVTA is competitive with existing methods~cite{arora2012computing}. Empirically AVTA is robust and can handle larger amounts of noise than existing methods." @default.
- W2787490135 created "2018-02-23" @default.
- W2787490135 creator A5018333582 @default.
- W2787490135 creator A5054636731 @default.
- W2787490135 creator A5056617357 @default.
- W2787490135 date "2018-02-05" @default.
- W2787490135 modified "2023-09-27" @default.
- W2787490135 title "Robust Vertex Enumeration for Convex Hulls in High Dimensions" @default.
- W2787490135 cites W1785854153 @default.
- W2787490135 cites W179323378 @default.
- W2787490135 cites W1880262756 @default.
- W2787490135 cites W1938536253 @default.
- W2787490135 cites W1985142965 @default.
- W2787490135 cites W2033040247 @default.
- W2787490135 cites W2049074379 @default.
- W2787490135 cites W2052948190 @default.
- W2787490135 cites W2063958549 @default.
- W2787490135 cites W2073416959 @default.
- W2787490135 cites W2109706083 @default.
- W2787490135 cites W2130324521 @default.
- W2787490135 cites W2136885855 @default.
- W2787490135 cites W2139230981 @default.
- W2787490135 cites W2140318696 @default.
- W2787490135 cites W2145889472 @default.
- W2787490135 cites W2147495235 @default.
- W2787490135 cites W2150731624 @default.
- W2787490135 cites W2153504150 @default.
- W2787490135 cites W2160741287 @default.
- W2787490135 cites W2166479660 @default.
- W2787490135 cites W2174706414 @default.
- W2787490135 cites W2611147814 @default.
- W2787490135 cites W2950289646 @default.
- W2787490135 cites W2950700385 @default.
- W2787490135 cites W2953027856 @default.
- W2787490135 cites W2953337630 @default.
- W2787490135 cites W2963625764 @default.
- W2787490135 cites W3143596294 @default.
- W2787490135 cites W3193477162 @default.
- W2787490135 cites W905619 @default.
- W2787490135 hasPublicationYear "2018" @default.
- W2787490135 type Work @default.
- W2787490135 sameAs 2787490135 @default.
- W2787490135 citedByCount "0" @default.
- W2787490135 crossrefType "posted-content" @default.
- W2787490135 hasAuthorship W2787490135A5018333582 @default.
- W2787490135 hasAuthorship W2787490135A5054636731 @default.
- W2787490135 hasAuthorship W2787490135A5056617357 @default.
- W2787490135 hasConcept C112680207 @default.
- W2787490135 hasConcept C11413529 @default.
- W2787490135 hasConcept C114614502 @default.
- W2787490135 hasConcept C118615104 @default.
- W2787490135 hasConcept C132525143 @default.
- W2787490135 hasConcept C156340839 @default.
- W2787490135 hasConcept C187834632 @default.
- W2787490135 hasConcept C206194317 @default.
- W2787490135 hasConcept C2524010 @default.
- W2787490135 hasConcept C33923547 @default.
- W2787490135 hasConcept C80899671 @default.
- W2787490135 hasConceptScore W2787490135C112680207 @default.
- W2787490135 hasConceptScore W2787490135C11413529 @default.
- W2787490135 hasConceptScore W2787490135C114614502 @default.
- W2787490135 hasConceptScore W2787490135C118615104 @default.
- W2787490135 hasConceptScore W2787490135C132525143 @default.
- W2787490135 hasConceptScore W2787490135C156340839 @default.
- W2787490135 hasConceptScore W2787490135C187834632 @default.
- W2787490135 hasConceptScore W2787490135C206194317 @default.
- W2787490135 hasConceptScore W2787490135C2524010 @default.
- W2787490135 hasConceptScore W2787490135C33923547 @default.
- W2787490135 hasConceptScore W2787490135C80899671 @default.
- W2787490135 hasLocation W27874901351 @default.
- W2787490135 hasOpenAccess W2787490135 @default.
- W2787490135 hasPrimaryLocation W27874901351 @default.
- W2787490135 hasRelatedWork W1537713048 @default.
- W2787490135 hasRelatedWork W1581442026 @default.
- W2787490135 hasRelatedWork W2012427196 @default.
- W2787490135 hasRelatedWork W2036621183 @default.
- W2787490135 hasRelatedWork W2045156582 @default.
- W2787490135 hasRelatedWork W2073116298 @default.
- W2787490135 hasRelatedWork W2086681627 @default.
- W2787490135 hasRelatedWork W2127670888 @default.
- W2787490135 hasRelatedWork W2142959308 @default.
- W2787490135 hasRelatedWork W2152945696 @default.
- W2787490135 hasRelatedWork W2161679356 @default.
- W2787490135 hasRelatedWork W2241912687 @default.
- W2787490135 hasRelatedWork W2606544095 @default.
- W2787490135 hasRelatedWork W2925146178 @default.
- W2787490135 hasRelatedWork W2952661584 @default.
- W2787490135 hasRelatedWork W2956137402 @default.
- W2787490135 hasRelatedWork W3098818037 @default.
- W2787490135 hasRelatedWork W3165080458 @default.
- W2787490135 hasRelatedWork W3203842245 @default.
- W2787490135 hasRelatedWork W2559889423 @default.
- W2787490135 isParatext "false" @default.
- W2787490135 isRetracted "false" @default.
- W2787490135 magId "2787490135" @default.
- W2787490135 workType "article" @default.