Matches in SemOpenAlex for { <https://semopenalex.org/work/W2787603174> ?p ?o ?g. }
- W2787603174 endingPage "217" @default.
- W2787603174 startingPage "217" @default.
- W2787603174 abstract "With the development of smart power grids, communication network technology and sensor technology, there has been an exponential growth in complex electricity load data. Irregular electricity load fluctuations caused by the weather and holiday factors disrupt the daily operation of the power companies. To deal with these challenges, this paper investigates a day-ahead electricity peak load interval forecasting problem. It transforms the conventional continuous forecasting problem into a novel interval forecasting problem, and then further converts the interval forecasting problem into the classification forecasting problem. In addition, an indicator system influencing the electricity load is established from three dimensions, namely the load series, calendar data, and weather data. A semi-supervised feature selection algorithm is proposed to address an electricity load classification forecasting issue based on the group method of data handling (GMDH) technology. The proposed algorithm consists of three main stages: (1) training the basic classifier; (2) selectively marking the most suitable samples from the unclassified label data, and adding them to an initial training set; and (3) training the classification models on the final training set and classifying the test samples. An empirical analysis of electricity load dataset from four Chinese cities is conducted. Results show that the proposed model can address the electricity load classification forecasting problem more efficiently and effectively than the FW-Semi FS (forward semi-supervised feature selection) and GMDH-U (GMDH-based semi-supervised feature selection for customer classification) models." @default.
- W2787603174 created "2018-02-23" @default.
- W2787603174 creator A5036186193 @default.
- W2787603174 creator A5069530992 @default.
- W2787603174 creator A5075688487 @default.
- W2787603174 date "2018-01-16" @default.
- W2787603174 modified "2023-10-06" @default.
- W2787603174 title "GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting" @default.
- W2787603174 cites W1793209788 @default.
- W2787603174 cites W1871376293 @default.
- W2787603174 cites W1963512496 @default.
- W2787603174 cites W1975897840 @default.
- W2787603174 cites W1977045974 @default.
- W2787603174 cites W1978429571 @default.
- W2787603174 cites W1985815014 @default.
- W2787603174 cites W2000164913 @default.
- W2787603174 cites W2013570992 @default.
- W2787603174 cites W2023645751 @default.
- W2787603174 cites W2023779506 @default.
- W2787603174 cites W2056043406 @default.
- W2787603174 cites W2070101089 @default.
- W2787603174 cites W2071458777 @default.
- W2787603174 cites W2072911459 @default.
- W2787603174 cites W2083020303 @default.
- W2787603174 cites W2083172453 @default.
- W2787603174 cites W2087086985 @default.
- W2787603174 cites W2089217930 @default.
- W2787603174 cites W2095471434 @default.
- W2787603174 cites W2114474246 @default.
- W2787603174 cites W2133439825 @default.
- W2787603174 cites W2146588145 @default.
- W2787603174 cites W2151767444 @default.
- W2787603174 cites W2168138569 @default.
- W2787603174 cites W2170917304 @default.
- W2787603174 cites W2172174166 @default.
- W2787603174 cites W2275088575 @default.
- W2787603174 cites W2283345143 @default.
- W2787603174 cites W2297311015 @default.
- W2787603174 cites W2337474653 @default.
- W2787603174 cites W2340247464 @default.
- W2787603174 cites W2528892416 @default.
- W2787603174 cites W2619505338 @default.
- W2787603174 cites W2623060688 @default.
- W2787603174 cites W2626395746 @default.
- W2787603174 cites W2663838451 @default.
- W2787603174 cites W2691864041 @default.
- W2787603174 cites W2727827603 @default.
- W2787603174 cites W2733852443 @default.
- W2787603174 cites W2761393103 @default.
- W2787603174 cites W2766228243 @default.
- W2787603174 cites W2767188367 @default.
- W2787603174 cites W2786998717 @default.
- W2787603174 cites W4229740899 @default.
- W2787603174 doi "https://doi.org/10.3390/su10010217" @default.
- W2787603174 hasPublicationYear "2018" @default.
- W2787603174 type Work @default.
- W2787603174 sameAs 2787603174 @default.
- W2787603174 citedByCount "14" @default.
- W2787603174 countsByYear W27876031742018 @default.
- W2787603174 countsByYear W27876031742019 @default.
- W2787603174 countsByYear W27876031742020 @default.
- W2787603174 countsByYear W27876031742021 @default.
- W2787603174 countsByYear W27876031742022 @default.
- W2787603174 countsByYear W27876031742023 @default.
- W2787603174 crossrefType "journal-article" @default.
- W2787603174 hasAuthorship W2787603174A5036186193 @default.
- W2787603174 hasAuthorship W2787603174A5069530992 @default.
- W2787603174 hasAuthorship W2787603174A5075688487 @default.
- W2787603174 hasBestOaLocation W27876031741 @default.
- W2787603174 hasConcept C119599485 @default.
- W2787603174 hasConcept C119857082 @default.
- W2787603174 hasConcept C124101348 @default.
- W2787603174 hasConcept C127413603 @default.
- W2787603174 hasConcept C13926793 @default.
- W2787603174 hasConcept C146733006 @default.
- W2787603174 hasConcept C148483581 @default.
- W2787603174 hasConcept C154945302 @default.
- W2787603174 hasConcept C206658404 @default.
- W2787603174 hasConcept C41008148 @default.
- W2787603174 hasConcept C95623464 @default.
- W2787603174 hasConceptScore W2787603174C119599485 @default.
- W2787603174 hasConceptScore W2787603174C119857082 @default.
- W2787603174 hasConceptScore W2787603174C124101348 @default.
- W2787603174 hasConceptScore W2787603174C127413603 @default.
- W2787603174 hasConceptScore W2787603174C13926793 @default.
- W2787603174 hasConceptScore W2787603174C146733006 @default.
- W2787603174 hasConceptScore W2787603174C148483581 @default.
- W2787603174 hasConceptScore W2787603174C154945302 @default.
- W2787603174 hasConceptScore W2787603174C206658404 @default.
- W2787603174 hasConceptScore W2787603174C41008148 @default.
- W2787603174 hasConceptScore W2787603174C95623464 @default.
- W2787603174 hasIssue "1" @default.
- W2787603174 hasLocation W27876031741 @default.
- W2787603174 hasLocation W27876031742 @default.
- W2787603174 hasOpenAccess W2787603174 @default.
- W2787603174 hasPrimaryLocation W27876031741 @default.
- W2787603174 hasRelatedWork W1598207381 @default.
- W2787603174 hasRelatedWork W2299915012 @default.