Matches in SemOpenAlex for { <https://semopenalex.org/work/W2787621843> ?p ?o ?g. }
- W2787621843 endingPage "8" @default.
- W2787621843 startingPage "199" @default.
- W2787621843 abstract "Fluorescence microscopy has become a widely used tool for studying various biological structures of in vivo tissue or cells. However, quantitative analysis of these biological structures remains a challenge due to their complexity which is exacerbated by distortions caused by lens aberrations and light scattering. Moreover, manual quantification of such image volumes is an intractable and error-prone process, making the need for automated image analysis methods crucial. This paper describes a segmentation method for tubular structures in fluorescence microscopy images using convolutional neural networks with data augmentation and inhomogeneity correction. The segmentation results of the proposed method are visually and numerically compared with other microscopy segmentation methods. Experimental results indicate that the proposed method has better performance with correctly segmenting and identifying multiple tubular structures compared to other methods." @default.
- W2787621843 created "2018-02-23" @default.
- W2787621843 creator A5007353807 @default.
- W2787621843 creator A5011720923 @default.
- W2787621843 creator A5050009915 @default.
- W2787621843 creator A5070413882 @default.
- W2787621843 creator A5089688702 @default.
- W2787621843 date "2018-01-28" @default.
- W2787621843 modified "2023-09-23" @default.
- W2787621843 title "Tubule Segmentation of Fluorescence Microscopy Images Based on Convolutional Neural Networks With Inhomogeneity Correction" @default.
- W2787621843 cites W1594738627 @default.
- W2787621843 cites W1686810756 @default.
- W2787621843 cites W1836465849 @default.
- W2787621843 cites W1901129140 @default.
- W2787621843 cites W1969257635 @default.
- W2787621843 cites W1982662510 @default.
- W2787621843 cites W1987869189 @default.
- W2787621843 cites W2048316306 @default.
- W2787621843 cites W2060042886 @default.
- W2787621843 cites W2076459392 @default.
- W2787621843 cites W2090865582 @default.
- W2787621843 cites W2096583389 @default.
- W2787621843 cites W2104095591 @default.
- W2787621843 cites W2116040950 @default.
- W2787621843 cites W2117108042 @default.
- W2787621843 cites W2140286515 @default.
- W2787621843 cites W2142722911 @default.
- W2787621843 cites W2146658490 @default.
- W2787621843 cites W2147607085 @default.
- W2787621843 cites W2160754664 @default.
- W2787621843 cites W2167685945 @default.
- W2787621843 cites W2171716839 @default.
- W2787621843 cites W2288892845 @default.
- W2787621843 cites W2395611524 @default.
- W2787621843 cites W2438028911 @default.
- W2787621843 cites W2592929672 @default.
- W2787621843 cites W2594140311 @default.
- W2787621843 cites W2683421136 @default.
- W2787621843 cites W2689259083 @default.
- W2787621843 cites W2711672883 @default.
- W2787621843 cites W49986119 @default.
- W2787621843 cites W753012316 @default.
- W2787621843 doi "https://doi.org/10.2352/issn.2470-1173.2018.15.coimg-199" @default.
- W2787621843 hasPublicationYear "2018" @default.
- W2787621843 type Work @default.
- W2787621843 sameAs 2787621843 @default.
- W2787621843 citedByCount "7" @default.
- W2787621843 countsByYear W27876218432019 @default.
- W2787621843 countsByYear W27876218432020 @default.
- W2787621843 countsByYear W27876218432021 @default.
- W2787621843 countsByYear W27876218432023 @default.
- W2787621843 crossrefType "journal-article" @default.
- W2787621843 hasAuthorship W2787621843A5007353807 @default.
- W2787621843 hasAuthorship W2787621843A5011720923 @default.
- W2787621843 hasAuthorship W2787621843A5050009915 @default.
- W2787621843 hasAuthorship W2787621843A5070413882 @default.
- W2787621843 hasAuthorship W2787621843A5089688702 @default.
- W2787621843 hasBestOaLocation W27876218432 @default.
- W2787621843 hasConcept C111919701 @default.
- W2787621843 hasConcept C120665830 @default.
- W2787621843 hasConcept C121332964 @default.
- W2787621843 hasConcept C124504099 @default.
- W2787621843 hasConcept C147080431 @default.
- W2787621843 hasConcept C153180895 @default.
- W2787621843 hasConcept C15336307 @default.
- W2787621843 hasConcept C154945302 @default.
- W2787621843 hasConcept C169274487 @default.
- W2787621843 hasConcept C31972630 @default.
- W2787621843 hasConcept C41008148 @default.
- W2787621843 hasConcept C81363708 @default.
- W2787621843 hasConcept C89600930 @default.
- W2787621843 hasConcept C91881484 @default.
- W2787621843 hasConcept C98045186 @default.
- W2787621843 hasConceptScore W2787621843C111919701 @default.
- W2787621843 hasConceptScore W2787621843C120665830 @default.
- W2787621843 hasConceptScore W2787621843C121332964 @default.
- W2787621843 hasConceptScore W2787621843C124504099 @default.
- W2787621843 hasConceptScore W2787621843C147080431 @default.
- W2787621843 hasConceptScore W2787621843C153180895 @default.
- W2787621843 hasConceptScore W2787621843C15336307 @default.
- W2787621843 hasConceptScore W2787621843C154945302 @default.
- W2787621843 hasConceptScore W2787621843C169274487 @default.
- W2787621843 hasConceptScore W2787621843C31972630 @default.
- W2787621843 hasConceptScore W2787621843C41008148 @default.
- W2787621843 hasConceptScore W2787621843C81363708 @default.
- W2787621843 hasConceptScore W2787621843C89600930 @default.
- W2787621843 hasConceptScore W2787621843C91881484 @default.
- W2787621843 hasConceptScore W2787621843C98045186 @default.
- W2787621843 hasIssue "15" @default.
- W2787621843 hasLocation W27876218431 @default.
- W2787621843 hasLocation W27876218432 @default.
- W2787621843 hasLocation W27876218433 @default.
- W2787621843 hasOpenAccess W2787621843 @default.
- W2787621843 hasPrimaryLocation W27876218431 @default.
- W2787621843 hasRelatedWork W1631910785 @default.
- W2787621843 hasRelatedWork W1669643531 @default.
- W2787621843 hasRelatedWork W1721780360 @default.
- W2787621843 hasRelatedWork W2110230079 @default.