Matches in SemOpenAlex for { <https://semopenalex.org/work/W2787751710> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2787751710 endingPage "12" @default.
- W2787751710 startingPage "1" @default.
- W2787751710 abstract "Sample preparation plays a crucial role in almost all biochemical applications, since a predominant portion of biochemical analysis time is associated with sample collection, transportation, and preparation. Many sample-preparation algorithms are proposed in the literature that are suitable for execution on programmable digital microfluidic (DMF) platforms. In most of the existing DMF-based sample-preparation algorithms, a fixed target ratio is provided as input, and the corresponding mixing tree is generated as output. However, in many biochemical applications, target mixtures with exact component proportions may not be needed. From a biochemical perspective, it may be sufficient to prepare a mixture in which the input reagents may lie within a range of concentration factors. The choice of a particular valid ratio, however, strongly impacts solution-preparation cost and time. To address this problem, we propose a concentration-resilient ratio-selection method from the input ratio space so that the reactant cost is minimized. We propose an integer linear programming--based method that terminates very fast while producing the optimum solution, considering both uniform and weighted cost of reagents. Experimental results reveal that the proposed method can be used conveniently in tandem with several existing sample-preparation algorithms for improving their performance." @default.
- W2787751710 created "2018-02-23" @default.
- W2787751710 creator A5062886706 @default.
- W2787751710 creator A5067730042 @default.
- W2787751710 creator A5067953128 @default.
- W2787751710 creator A5091713952 @default.
- W2787751710 date "2018-01-30" @default.
- W2787751710 modified "2023-09-27" @default.
- W2787751710 title "Concentration-Resilient Mixture Preparation with Digital Microfluidic Lab-on-Chip" @default.
- W2787751710 cites W1964531440 @default.
- W2787751710 cites W1978769720 @default.
- W2787751710 cites W1980181699 @default.
- W2787751710 cites W1982492379 @default.
- W2787751710 cites W1983105816 @default.
- W2787751710 cites W2019656557 @default.
- W2787751710 cites W2026445983 @default.
- W2787751710 cites W2052580805 @default.
- W2787751710 cites W2092396288 @default.
- W2787751710 cites W2095086030 @default.
- W2787751710 cites W2104622925 @default.
- W2787751710 cites W2109834102 @default.
- W2787751710 cites W2168567259 @default.
- W2787751710 cites W2201606084 @default.
- W2787751710 cites W2581354895 @default.
- W2787751710 cites W2615975792 @default.
- W2787751710 cites W2738065864 @default.
- W2787751710 cites W4210960748 @default.
- W2787751710 doi "https://doi.org/10.1145/3157094" @default.
- W2787751710 hasPublicationYear "2018" @default.
- W2787751710 type Work @default.
- W2787751710 sameAs 2787751710 @default.
- W2787751710 citedByCount "9" @default.
- W2787751710 countsByYear W27877517102019 @default.
- W2787751710 countsByYear W27877517102020 @default.
- W2787751710 countsByYear W27877517102021 @default.
- W2787751710 countsByYear W27877517102022 @default.
- W2787751710 crossrefType "journal-article" @default.
- W2787751710 hasAuthorship W2787751710A5062886706 @default.
- W2787751710 hasAuthorship W2787751710A5067730042 @default.
- W2787751710 hasAuthorship W2787751710A5067953128 @default.
- W2787751710 hasAuthorship W2787751710A5091713952 @default.
- W2787751710 hasConcept C11413529 @default.
- W2787751710 hasConcept C147789679 @default.
- W2787751710 hasConcept C159985019 @default.
- W2787751710 hasConcept C165005293 @default.
- W2787751710 hasConcept C171250308 @default.
- W2787751710 hasConcept C185592680 @default.
- W2787751710 hasConcept C192562407 @default.
- W2787751710 hasConcept C198531522 @default.
- W2787751710 hasConcept C204323151 @default.
- W2787751710 hasConcept C40875361 @default.
- W2787751710 hasConcept C41008148 @default.
- W2787751710 hasConcept C43617362 @default.
- W2787751710 hasConcept C76155785 @default.
- W2787751710 hasConcept C8673954 @default.
- W2787751710 hasConceptScore W2787751710C11413529 @default.
- W2787751710 hasConceptScore W2787751710C147789679 @default.
- W2787751710 hasConceptScore W2787751710C159985019 @default.
- W2787751710 hasConceptScore W2787751710C165005293 @default.
- W2787751710 hasConceptScore W2787751710C171250308 @default.
- W2787751710 hasConceptScore W2787751710C185592680 @default.
- W2787751710 hasConceptScore W2787751710C192562407 @default.
- W2787751710 hasConceptScore W2787751710C198531522 @default.
- W2787751710 hasConceptScore W2787751710C204323151 @default.
- W2787751710 hasConceptScore W2787751710C40875361 @default.
- W2787751710 hasConceptScore W2787751710C41008148 @default.
- W2787751710 hasConceptScore W2787751710C43617362 @default.
- W2787751710 hasConceptScore W2787751710C76155785 @default.
- W2787751710 hasConceptScore W2787751710C8673954 @default.
- W2787751710 hasFunder F4320327938 @default.
- W2787751710 hasIssue "2" @default.
- W2787751710 hasLocation W27877517101 @default.
- W2787751710 hasOpenAccess W2787751710 @default.
- W2787751710 hasPrimaryLocation W27877517101 @default.
- W2787751710 hasRelatedWork W2000093090 @default.
- W2787751710 hasRelatedWork W2008583576 @default.
- W2787751710 hasRelatedWork W2010069219 @default.
- W2787751710 hasRelatedWork W2047096401 @default.
- W2787751710 hasRelatedWork W2082840085 @default.
- W2787751710 hasRelatedWork W2096654022 @default.
- W2787751710 hasRelatedWork W2125178102 @default.
- W2787751710 hasRelatedWork W2747318931 @default.
- W2787751710 hasRelatedWork W2982440627 @default.
- W2787751710 hasRelatedWork W3010012192 @default.
- W2787751710 hasVolume "17" @default.
- W2787751710 isParatext "false" @default.
- W2787751710 isRetracted "false" @default.
- W2787751710 magId "2787751710" @default.
- W2787751710 workType "article" @default.