Matches in SemOpenAlex for { <https://semopenalex.org/work/W2787809869> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2787809869 abstract "ABSTRACT Long non-coding RNAs (lncRNAs) emerge as important regulators of various biological processes. Many lncRNAs with tumor-suppressor or oncogenic functions in cancer have been discovered. While many studies have exploited public resources such as RNA-Seq data in The Cancer Genome Atlas (TCGA) to study lncRNAs in cancer, it is crucial to choose the optimal method for accurate expression quantification of lncRNAs. In this benchmarking study, we compared the performance of pseudoalignment methods Kallisto and Salmon, and alignment-based methods HTSeq, featureCounts, and RSEM, in lncRNA quantification, by applying them to a simulated RNA-Seq dataset and a pan-cancer RNA-Seq dataset from TCGA. We observed that full transcriptome annotation, including both protein coding and noncoding RNAs, greatly improves the specificity of lncRNA expression quantification. Pseudoalignment-based methods detect more lncRNAs than alignment-based methods and correlate highly with simulated ground truth. On the contrary, alignment-based methods tend to underestimate lncRNA expression or even fail to capture lncRNA signal in the ground truth. These underestimated genes include cancer-relevant lncRNAs such as TERC and ZEB2-AS1 . Overall, 10–16% of lncRNAs can be detected in the samples, with antisense and lincRNAs the two most abundant categories. A higher proportion of antisense RNAs are detected than lincRNAs. Moreover, among the expressed lncRNAs, more antisense RNAs are discordant from ground truth than lincRNAs when measured by alignment-based methods, indicating that antisense RNAs are more susceptible to mis-quantification. In addition, the lncRNAs with fewer transcripts, less than three exons, and lower sequence uniqueness tend to be more discordant. In summary, pseudoalignment methods Kallisto or Salmon in combination with the full transcriptome annotation is our recommended strategy for RNA-Seq analysis for lncRNAs. AUTHOR SUMMARY Long non-coding RNAs (lncRNAs) emerge as important regulators of various biological processes. Our benchmarking work on both simulated RNA-Seq dataset and pan-cancer dataset provides timely and useful recommendations for wide research community who are studying lncRNAs, especially for those who are exploring public resources such as TCGA RNA-Seq data. We demonstrate that using full transcriptome annotation in RNA-Seq analysis is strongly recommended as it greatly improves the specificity of lncRNA quantification. What’s more, pseudoalignment methods Kallisto and Salmon outperform alignment-based methods in lncRNA quantification. It is worth noting that the default workflow for TCGA RNA-Seq data stored in Genomic Data Commons (GDC) data portal uses HTSeq, an alignment-based method. Thus, reanalyzing the data might be considered when checking gene expression in TCGA datasets. In summary, pseudoalignment methods Kallisto or Salmon in combination with full transcriptome annotation is our recommended strategy for RNA-Seq analysis for lncRNAs." @default.
- W2787809869 created "2018-02-23" @default.
- W2787809869 creator A5044149683 @default.
- W2787809869 creator A5051029833 @default.
- W2787809869 creator A5078274543 @default.
- W2787809869 creator A5089609746 @default.
- W2787809869 date "2018-01-02" @default.
- W2787809869 modified "2023-10-18" @default.
- W2787809869 title "Benchmark of lncRNA Quantification for RNA-Seq of Cancer Samples" @default.
- W2787809869 cites W1519070462 @default.
- W2787809869 cites W1555951822 @default.
- W2787809869 cites W1999574084 @default.
- W2787809869 cites W2000696558 @default.
- W2787809869 cites W2032183472 @default.
- W2787809869 cites W2039408641 @default.
- W2787809869 cites W2070777085 @default.
- W2787809869 cites W2071271349 @default.
- W2787809869 cites W2083033504 @default.
- W2787809869 cites W2092467693 @default.
- W2787809869 cites W2134526812 @default.
- W2787809869 cites W2138207763 @default.
- W2787809869 cites W2141831115 @default.
- W2787809869 cites W2146573461 @default.
- W2787809869 cites W2162547088 @default.
- W2787809869 cites W2168619725 @default.
- W2787809869 cites W2169456326 @default.
- W2787809869 cites W2197124664 @default.
- W2787809869 cites W2198153867 @default.
- W2787809869 cites W2323326409 @default.
- W2787809869 cites W2335029242 @default.
- W2787809869 cites W2340210804 @default.
- W2787809869 cites W2579268832 @default.
- W2787809869 cites W2592811885 @default.
- W2787809869 cites W2610975234 @default.
- W2787809869 cites W2743624002 @default.
- W2787809869 doi "https://doi.org/10.1101/241869" @default.
- W2787809869 hasPublicationYear "2018" @default.
- W2787809869 type Work @default.
- W2787809869 sameAs 2787809869 @default.
- W2787809869 citedByCount "0" @default.
- W2787809869 crossrefType "posted-content" @default.
- W2787809869 hasAuthorship W2787809869A5044149683 @default.
- W2787809869 hasAuthorship W2787809869A5051029833 @default.
- W2787809869 hasAuthorship W2787809869A5078274543 @default.
- W2787809869 hasAuthorship W2787809869A5089609746 @default.
- W2787809869 hasBestOaLocation W27878098691 @default.
- W2787809869 hasConcept C104317684 @default.
- W2787809869 hasConcept C107397762 @default.
- W2787809869 hasConcept C150194340 @default.
- W2787809869 hasConcept C162317418 @default.
- W2787809869 hasConcept C202416437 @default.
- W2787809869 hasConcept C54355233 @default.
- W2787809869 hasConcept C62203573 @default.
- W2787809869 hasConcept C67705224 @default.
- W2787809869 hasConcept C70721500 @default.
- W2787809869 hasConcept C86803240 @default.
- W2787809869 hasConceptScore W2787809869C104317684 @default.
- W2787809869 hasConceptScore W2787809869C107397762 @default.
- W2787809869 hasConceptScore W2787809869C150194340 @default.
- W2787809869 hasConceptScore W2787809869C162317418 @default.
- W2787809869 hasConceptScore W2787809869C202416437 @default.
- W2787809869 hasConceptScore W2787809869C54355233 @default.
- W2787809869 hasConceptScore W2787809869C62203573 @default.
- W2787809869 hasConceptScore W2787809869C67705224 @default.
- W2787809869 hasConceptScore W2787809869C70721500 @default.
- W2787809869 hasConceptScore W2787809869C86803240 @default.
- W2787809869 hasLocation W27878098691 @default.
- W2787809869 hasLocation W27878098692 @default.
- W2787809869 hasOpenAccess W2787809869 @default.
- W2787809869 hasPrimaryLocation W27878098691 @default.
- W2787809869 hasRelatedWork W1905128537 @default.
- W2787809869 hasRelatedWork W2083325294 @default.
- W2787809869 hasRelatedWork W2092652725 @default.
- W2787809869 hasRelatedWork W2118023394 @default.
- W2787809869 hasRelatedWork W2279758515 @default.
- W2787809869 hasRelatedWork W2529308621 @default.
- W2787809869 hasRelatedWork W2777632346 @default.
- W2787809869 hasRelatedWork W2788821211 @default.
- W2787809869 hasRelatedWork W2801972999 @default.
- W2787809869 hasRelatedWork W2886531617 @default.
- W2787809869 hasRelatedWork W2887934756 @default.
- W2787809869 hasRelatedWork W2895367707 @default.
- W2787809869 hasRelatedWork W2911534812 @default.
- W2787809869 hasRelatedWork W2932476540 @default.
- W2787809869 hasRelatedWork W2949084500 @default.
- W2787809869 hasRelatedWork W2993870784 @default.
- W2787809869 hasRelatedWork W3094758468 @default.
- W2787809869 hasRelatedWork W3112170754 @default.
- W2787809869 hasRelatedWork W3132955349 @default.
- W2787809869 hasRelatedWork W3174800867 @default.
- W2787809869 isParatext "false" @default.
- W2787809869 isRetracted "false" @default.
- W2787809869 magId "2787809869" @default.
- W2787809869 workType "article" @default.