Matches in SemOpenAlex for { <https://semopenalex.org/work/W2787882323> ?p ?o ?g. }
- W2787882323 endingPage "788" @default.
- W2787882323 startingPage "778" @default.
- W2787882323 abstract "ConspectusAs one of the most biocompatible and well-tolerated inorganic nanomaterials, silica-based nanoparticles (SiNPs) have received extensive attention over the last several decades. Recently, positron emission tomography (PET) imaging of radiolabeled SiNPs has provided a highly sensitive, noninvasive, and quantitative readout of the organ/tissue distribution, pharmacokinetics, and tumor targeting efficiency in vivo, which can greatly expedite the clinical translation of these promising NPs. Encouraged by the successful PET imaging of patients with metastatic melanoma using 124I-labeled ultrasmall SiNPs (known as Cornell dots or C dots) and their approval as an Investigational New Drug (IND) by the United States Food and Drug Administration, different radioisotopes (64Cu, 89Zr, 18F, 68Ga, 124I, etc.) have been reported to radiolabel a wide variety of SiNPs-based nanostructures, including dense silica (dSiO2), mesoporous silica (MSN), biodegradable mesoporous silica (bMSN), and hollow mesoporous silica nanoparticles (HMSN). With in-depth knowledge of coordination chemistry, abundant silanol groups (−Si–O−) on the silica surface or inside mesoporous channels not only can be directly used for chelator-free radiolabeling but also can be readily modified with the right chelators for chelator-based labeling. However, integrating these labeling strategies for constructing stably radiolabeled SiNPs with high efficiency has proven difficult because of the complexity of the involved key parameters, such as the choice of radioisotopes and chelators, nanostructures, and radiolabeling strategy.In this Account, we present an overview of recent progress in the development of radiolabeled SiNPs for cancer theranostics in the hope of speeding up their biomedical applications and potential translation into the clinic. We first introduce the basic principles and mechanisms for radiolabeling SiNPs via coordination chemistry, including general rules of selecting proper radioisotopes, engineering silica nanoplatforms (e.g., dSiO2, MSN, HMSN) accordingly, and chelation strategies for enhanced labeling efficiency and stability, on which our group has focused over the past decade. Generally, the medical applications guide the choice of specific SiNPs for radiolabeling by considering the inherent functionality of SiNPs. The radioisotopes can then be determined according to the amenability of the particular SiNPs for chelator-based or chelator-free radiolabeling to obtain high labeling stability in vivo, which is a prerequisite for PET to truly reflect the behavior of SiNPs since PET imaging detects the isotopes rather than nanoparticles. Next, we highlight several recent representative biomedical applications of radiolabeled SiNPs including molecular imaging to detect specific lesions, PET-guided drug delivery, SiNP-based theranostic cancer agents, and clinical studies. Finally, the challenges and prospects of radiolabeled SiNPs are briefly discussed toward clinical cancer research.We hope that this Account will clarify the recent progress on the radiolabeling of SiNPs for specific medical applications and generate broad interest in integrating nanotechnology and PET imaging. With several ongoing clinical trials, radiolabeled SiNPs offer great potential for future patient stratification and cancer management in clinical settings." @default.
- W2787882323 created "2018-03-06" @default.
- W2787882323 creator A5006097385 @default.
- W2787882323 creator A5016526230 @default.
- W2787882323 creator A5042734796 @default.
- W2787882323 creator A5045938376 @default.
- W2787882323 creator A5085412582 @default.
- W2787882323 date "2018-02-28" @default.
- W2787882323 modified "2023-10-13" @default.
- W2787882323 title "Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications" @default.
- W2787882323 cites W1008653395 @default.
- W2787882323 cites W1772470385 @default.
- W2787882323 cites W1896972917 @default.
- W2787882323 cites W1897846201 @default.
- W2787882323 cites W1973008689 @default.
- W2787882323 cites W1981502499 @default.
- W2787882323 cites W2022203941 @default.
- W2787882323 cites W2026410204 @default.
- W2787882323 cites W2044765863 @default.
- W2787882323 cites W2048735112 @default.
- W2787882323 cites W2052441727 @default.
- W2787882323 cites W2056225309 @default.
- W2787882323 cites W2057610600 @default.
- W2787882323 cites W2063443915 @default.
- W2787882323 cites W2074707269 @default.
- W2787882323 cites W2102189935 @default.
- W2787882323 cites W2108479069 @default.
- W2787882323 cites W2109464992 @default.
- W2787882323 cites W2116628090 @default.
- W2787882323 cites W2117692326 @default.
- W2787882323 cites W2127770027 @default.
- W2787882323 cites W2136510151 @default.
- W2787882323 cites W2160771041 @default.
- W2787882323 cites W2167577902 @default.
- W2787882323 cites W2226340528 @default.
- W2787882323 cites W2314930919 @default.
- W2787882323 cites W2319295441 @default.
- W2787882323 cites W2328417245 @default.
- W2787882323 cites W2331865458 @default.
- W2787882323 cites W2344482425 @default.
- W2787882323 cites W2403515063 @default.
- W2787882323 cites W2476606909 @default.
- W2787882323 cites W2498278049 @default.
- W2787882323 cites W2511541495 @default.
- W2787882323 cites W2523701489 @default.
- W2787882323 cites W2554773181 @default.
- W2787882323 cites W2586662483 @default.
- W2787882323 cites W2589767790 @default.
- W2787882323 cites W2605930068 @default.
- W2787882323 cites W2606538409 @default.
- W2787882323 cites W2625893980 @default.
- W2787882323 cites W2626414467 @default.
- W2787882323 cites W2752080896 @default.
- W2787882323 cites W2756448128 @default.
- W2787882323 cites W2765750234 @default.
- W2787882323 cites W2769163799 @default.
- W2787882323 cites W2774339324 @default.
- W2787882323 cites W2777113431 @default.
- W2787882323 doi "https://doi.org/10.1021/acs.accounts.7b00635" @default.
- W2787882323 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5878690" @default.
- W2787882323 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29489335" @default.
- W2787882323 hasPublicationYear "2018" @default.
- W2787882323 type Work @default.
- W2787882323 sameAs 2787882323 @default.
- W2787882323 citedByCount "66" @default.
- W2787882323 countsByYear W27878823232018 @default.
- W2787882323 countsByYear W27878823232019 @default.
- W2787882323 countsByYear W27878823232020 @default.
- W2787882323 countsByYear W27878823232021 @default.
- W2787882323 countsByYear W27878823232022 @default.
- W2787882323 countsByYear W27878823232023 @default.
- W2787882323 crossrefType "journal-article" @default.
- W2787882323 hasAuthorship W2787882323A5006097385 @default.
- W2787882323 hasAuthorship W2787882323A5016526230 @default.
- W2787882323 hasAuthorship W2787882323A5042734796 @default.
- W2787882323 hasAuthorship W2787882323A5045938376 @default.
- W2787882323 hasAuthorship W2787882323A5085412582 @default.
- W2787882323 hasBestOaLocation W27878823232 @default.
- W2787882323 hasConcept C1318750 @default.
- W2787882323 hasConcept C136229726 @default.
- W2787882323 hasConcept C138631740 @default.
- W2787882323 hasConcept C15083742 @default.
- W2787882323 hasConcept C150903083 @default.
- W2787882323 hasConcept C155672457 @default.
- W2787882323 hasConcept C161790260 @default.
- W2787882323 hasConcept C171250308 @default.
- W2787882323 hasConcept C185592680 @default.
- W2787882323 hasConcept C192562407 @default.
- W2787882323 hasConcept C207001950 @default.
- W2787882323 hasConcept C2775842073 @default.
- W2787882323 hasConcept C2777496208 @default.
- W2787882323 hasConcept C2777581007 @default.
- W2787882323 hasConcept C2779820397 @default.
- W2787882323 hasConcept C2989005 @default.
- W2787882323 hasConcept C55493867 @default.
- W2787882323 hasConcept C71924100 @default.
- W2787882323 hasConcept C82776694 @default.
- W2787882323 hasConcept C86803240 @default.