Matches in SemOpenAlex for { <https://semopenalex.org/work/W2787923690> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2787923690 abstract "Regression models for dichotomous data are ubiquitous in statistics. Besides being fundamental for inference on binary responses, such representations additionally provide an essential building-block in more complex formulations, such as predictor-dependent mixture models, deep neural networks, graphical models, and others. Within a Bayesian framework, inference typically proceeds by updating the Gaussian priors for the regression coefficients with the likelihood induced by a probit or logit model for the observed binary response data. The apparent absence of conjugacy in this Bayesian updating has motivated a wide variety of computational methods, including Markov Chain Monte Carlo (MCMC) routines and algorithms for approximating the posterior distribution. Although such methods are routinely implemented, data augmentation MCMC faces convergence and mixing issues in imbalanced data settings and in hierarchical models, whereas approximate routines fail to capture the skewness and the heavy tails typically observed in the posterior distribution of the coefficients. This article shows that the posterior for the coefficients of a probit model is indeed analytically available---under Gaussian priors---and coincides with a unified skew-normal. Due to this, it is possible to study explicitly the posterior distribution along with the predictive probability mass function of the responses, and to derive a novel and more efficient sampler for high-dimensional inference. A conjugate class of priors for Bayesian probit regression, improving flexibility in prior specification without affecting tractability in posterior inference, is also provided." @default.
- W2787923690 created "2018-03-06" @default.
- W2787923690 creator A5068162496 @default.
- W2787923690 date "2018-02-26" @default.
- W2787923690 modified "2023-09-27" @default.
- W2787923690 title "Conjugate Bayes for probit regression via unified skew-normals" @default.
- W2787923690 hasPublicationYear "2018" @default.
- W2787923690 type Work @default.
- W2787923690 sameAs 2787923690 @default.
- W2787923690 citedByCount "5" @default.
- W2787923690 countsByYear W27879236902019 @default.
- W2787923690 countsByYear W27879236902020 @default.
- W2787923690 countsByYear W27879236902021 @default.
- W2787923690 crossrefType "posted-content" @default.
- W2787923690 hasAuthorship W2787923690A5068162496 @default.
- W2787923690 hasConcept C105795698 @default.
- W2787923690 hasConcept C107673813 @default.
- W2787923690 hasConcept C111350023 @default.
- W2787923690 hasConcept C160234255 @default.
- W2787923690 hasConcept C177769412 @default.
- W2787923690 hasConcept C33923547 @default.
- W2787923690 hasConcept C37903108 @default.
- W2787923690 hasConcept C41008148 @default.
- W2787923690 hasConcept C57830394 @default.
- W2787923690 hasConceptScore W2787923690C105795698 @default.
- W2787923690 hasConceptScore W2787923690C107673813 @default.
- W2787923690 hasConceptScore W2787923690C111350023 @default.
- W2787923690 hasConceptScore W2787923690C160234255 @default.
- W2787923690 hasConceptScore W2787923690C177769412 @default.
- W2787923690 hasConceptScore W2787923690C33923547 @default.
- W2787923690 hasConceptScore W2787923690C37903108 @default.
- W2787923690 hasConceptScore W2787923690C41008148 @default.
- W2787923690 hasConceptScore W2787923690C57830394 @default.
- W2787923690 hasLocation W27879236901 @default.
- W2787923690 hasOpenAccess W2787923690 @default.
- W2787923690 hasPrimaryLocation W27879236901 @default.
- W2787923690 hasRelatedWork W195954592 @default.
- W2787923690 hasRelatedWork W1964555823 @default.
- W2787923690 hasRelatedWork W1988802653 @default.
- W2787923690 hasRelatedWork W2002036195 @default.
- W2787923690 hasRelatedWork W2025955162 @default.
- W2787923690 hasRelatedWork W2050594109 @default.
- W2787923690 hasRelatedWork W2080335568 @default.
- W2787923690 hasRelatedWork W2094081351 @default.
- W2787923690 hasRelatedWork W2101048999 @default.
- W2787923690 hasRelatedWork W2177956663 @default.
- W2787923690 hasRelatedWork W2308184609 @default.
- W2787923690 hasRelatedWork W2312056921 @default.
- W2787923690 hasRelatedWork W2949454430 @default.
- W2787923690 hasRelatedWork W2949712484 @default.
- W2787923690 hasRelatedWork W2963162172 @default.
- W2787923690 hasRelatedWork W2969557150 @default.
- W2787923690 hasRelatedWork W2992769304 @default.
- W2787923690 hasRelatedWork W3112227798 @default.
- W2787923690 hasRelatedWork W3121797894 @default.
- W2787923690 hasRelatedWork W1583700866 @default.
- W2787923690 isParatext "false" @default.
- W2787923690 isRetracted "false" @default.
- W2787923690 magId "2787923690" @default.
- W2787923690 workType "article" @default.