Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788049501> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2788049501 abstract "Let $p$ be a fixed odd prime number, $mu$ be a Hida family over the Iwasawa algebra of one variable, $rho_{mu}$ its Galois representation, $mathbb{Q}_infty/mathbb{Q}$ the $p$-cyclotomic tower and $S$ the variable of the cyclotomic Iwasawa algebra. We compare, for $nleq 4$ and under certain assumptions, the characteristic power series $L(S)$ of the dual of Selmer groups $mathrm{Sel}(mathbb{Q}_{infty},mathrm{Sym}^{2n}otimesmathrm{det}^{-n}rho_{mu})$ to certain congruence ideals. The case $n=1$ has been treated by H.Hida. In particular, we express the first term of the Taylor expansion at the trivial zero $S=0$ of $L(S)$ in terms of an $mathcal{L}$-invariant and a congruence number. We conjecture the non-vanishing of this $mathcal{L}$-invariant; this implies therefore that these Selmer groups are cotorsion. We also show that our $mathcal{L}$-invariants coincide with Greenberg's $mathcal{L}$-invariants calculated by R.Harron and A.Jorza." @default.
- W2788049501 created "2018-03-06" @default.
- W2788049501 creator A5063880073 @default.
- W2788049501 date "2018-02-22" @default.
- W2788049501 modified "2023-09-27" @default.
- W2788049501 title "Selmer groups of symmetric powers of ordinary modular Galois representations" @default.
- W2788049501 cites W1515288351 @default.
- W2788049501 cites W1972136625 @default.
- W2788049501 cites W2030101068 @default.
- W2788049501 cites W2043046189 @default.
- W2788049501 cites W2093981183 @default.
- W2788049501 cites W2284607851 @default.
- W2788049501 cites W2892582895 @default.
- W2788049501 cites W43097866 @default.
- W2788049501 doi "https://doi.org/10.48550/arxiv.1802.08329" @default.
- W2788049501 hasPublicationYear "2018" @default.
- W2788049501 type Work @default.
- W2788049501 sameAs 2788049501 @default.
- W2788049501 citedByCount "0" @default.
- W2788049501 crossrefType "posted-content" @default.
- W2788049501 hasAuthorship W2788049501A5063880073 @default.
- W2788049501 hasBestOaLocation W27880495011 @default.
- W2788049501 hasConcept C114614502 @default.
- W2788049501 hasConcept C132074034 @default.
- W2788049501 hasConcept C145899342 @default.
- W2788049501 hasConcept C190470478 @default.
- W2788049501 hasConcept C202444582 @default.
- W2788049501 hasConcept C2524010 @default.
- W2788049501 hasConcept C2780990831 @default.
- W2788049501 hasConcept C33923547 @default.
- W2788049501 hasConcept C37914503 @default.
- W2788049501 hasConcept C67536143 @default.
- W2788049501 hasConceptScore W2788049501C114614502 @default.
- W2788049501 hasConceptScore W2788049501C132074034 @default.
- W2788049501 hasConceptScore W2788049501C145899342 @default.
- W2788049501 hasConceptScore W2788049501C190470478 @default.
- W2788049501 hasConceptScore W2788049501C202444582 @default.
- W2788049501 hasConceptScore W2788049501C2524010 @default.
- W2788049501 hasConceptScore W2788049501C2780990831 @default.
- W2788049501 hasConceptScore W2788049501C33923547 @default.
- W2788049501 hasConceptScore W2788049501C37914503 @default.
- W2788049501 hasConceptScore W2788049501C67536143 @default.
- W2788049501 hasLocation W27880495011 @default.
- W2788049501 hasOpenAccess W2788049501 @default.
- W2788049501 hasPrimaryLocation W27880495011 @default.
- W2788049501 hasRelatedWork W1676715797 @default.
- W2788049501 hasRelatedWork W1811619627 @default.
- W2788049501 hasRelatedWork W1996333803 @default.
- W2788049501 hasRelatedWork W2011184728 @default.
- W2788049501 hasRelatedWork W2138239764 @default.
- W2788049501 hasRelatedWork W2138852639 @default.
- W2788049501 hasRelatedWork W2317623867 @default.
- W2788049501 hasRelatedWork W2793236252 @default.
- W2788049501 hasRelatedWork W2964086954 @default.
- W2788049501 hasRelatedWork W4298251307 @default.
- W2788049501 isParatext "false" @default.
- W2788049501 isRetracted "false" @default.
- W2788049501 magId "2788049501" @default.
- W2788049501 workType "article" @default.